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Assembly of the SpoIIIE DNA Translocase Depends
on Chromosome Trapping in Bacillus subtilis

successfully translocated into the forespore. Even in
cases in which the polar septum fails to trap DNA, spore
formation can often still take place by the following fail-
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tential division sites; if the first-formed polar septum fails16 Divinity Avenue
Cambridge, Massachusetts 02138 to capture DNA, a second septum forms at the distal pole,

providing a second opportunity to trap DNA [6].
This ability of a RacA mutant both to produce polar

septa that either have or have not trapped a chromo-Summary
some provided an attractive opportunity to address the
question of whether assembly of the SpoIIIE DNA trans-Sporulation in Bacillus subtilis is an attractive system
locase at the middle of the septum is dependent uponin which to study the translocation of a chromosome
DNA that transverses the septum. SpoIIIE is a memberacross a membrane. Sporulating cells contain two sis-
of a family of DNA translocases that are involved inter chromosomes that are condensed in an elongated
pumping DNA across membranes. SpoIIIE and its rela-axial filament with the origins of replication anchored
tives are composed of an N-terminal, integral membraneat opposite poles of the sporangium [1, 2]. The subse-
domain and a C-terminal cytoplasmic domain, whichquent formation of a septum near one pole divides the
contains an ATP binding site [7, 8]. The N-terminal partsporangium unequally into a forespore (the smaller
of SpoIIIE is required for proper localization of the pro-compartment) and a mother cell [3]. The septum forms
tein to the division septum [5]. The C-terminal domainaround the filament, trapping the origin-proximal re-
contains a DNA-dependent adenosine triphosphatasegion of one chromosome in the forespore. As a conse-
(ATPase) and is capable of tracking along DNA in thequence, the trapped chromosome transverses the
presence of ATP. It is this ATP-dependent tracking activ-septum with the remainder being left in the mother
ity that is presumably responsible for the ability of thecell [4]. Next, SpoIIIE assembles at the middle of the
membrane-anchored SpoIIIE to translocate DNA [9].septum to create a translocase that pumps the origin-

The assembly of SpoIIIE in the septum can be readilydistal, two-thirds of the chromosome into the fore-
visualized using a fusion of the DNA translocation pro-spore [5]. Here, we address the question of how the
tein to the green fluorescence protein (GFP). Cells pro-DNA translocase assembles and how it localizes to
ducing such a SpoIIIE-GFP fusion exhibit a distinct focusthe septal midpoint. We present evidence that DNA
of fluorescence approximately at the midpoint of thetransversing the septum is an anchor that nucleates
polar septum [5, 10], and it was proposed that this focusthe formation of the DNA translocase. We propose
represents a channel around the trapped chromosomethat DNA anchoring is responsible for the assembly
where it transverses the septum [5]. To carry out ourof other SpoIIIE-like DNA translocases, such as those
analysis, we replaced spoIIIE with a spoIIIE-gfp con-that remove trapped chromosomes from the division
struct in wild-type cells and in a racA mutant to createseptum of cells undergoing binary fission.
strains SB234 and SB237, respectively. The SpoIIIE-
GFP fusion was fully, or at least substantially, functional,Results and Discussion
as cells producing the fusion protein were able to grow
and sporulate as well as cells producing the unmodifiedPrevious work has shown that formation of the axial
DNA translocase. Developing cells of the two strainsfilament and the attachment of the origin regions to
were treated with the vital membrane stain FM4-64 (red)opposite poles of the sporangium are mediated by a
and the DNA stain DAPI (blue) and visualized by fluores-developmental protein called RacA that is produced at
cence microscopy at various times after the start ofthe start of sporulation [6]. Mutant sporangia lacking
sporulation. A typical pattern of SpoIIIE-GFP localizationRacA do not form an axial filament. Instead, they contain
for the wild-type sporangia is presented in Figure 1Aa stubby nucleoid whose ends are not attached to the
and in the field of cells in Figure 1F, in which the fusioncell poles. As a consequence, asymmetric division fre-
protein can be seen as a bright green focus near thequently results in forespores that are devoid of DNA.
midpoint of the polar septa. A comparison of FiguresHowever, polar anchoring of the chromosome and axial
1F and 1G shows that septal foci were more frequentlyfilament formation are not essential for chromosomal
observed in wild-type sporangia than in mutant sporan-trapping, as the polar septum is frequently (about 50%
gia. Importantly, the presence of a focus in the polarof polar divisions) able to trap DNA in mutant sporangia
septa of RacA mutant sporangia was invariably associ-that lack RacA. In such cases, a chromosome can be
ated with the presence of a chromosome crossing that
septum (compare Figures 1A and 1F with Figures 1B
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Figure 1. DNA Translocase Localization De-
pends on DNA Trapping

Sporulating cells of strains producing SpoI-
IIE-GFP (green) were stained with FM4-64
(red) and with DAPI (blue) and examined by
fluorescence microscopy at hour 3 of sporu-
lation (30�C) (fluorescence microscopy was
carried out as described previously [22]).
Shown are sporangia from: (A and F) a SpoI-
IIE-GFP-producing, racA� strain (SB234),
(B-D and G) a SpoIIIE-GFP-producing, racA
mutant strain (SB237), and (E and H) a SpoIIIE-
GFP-producing racA� strain that contained a
mutation (�spoIIAC) that allowed septa to
form at both poles (SB243). (A-E) The left-
hand column shows fluorescence from SpoI-
IIE-GFP, the second column from the left
shows an overlay of the SpoIIIE-GFP signal
with FM4-64, the third column from the left
shows the DNA stained with DAPI, and the
right-hand column shows an overlay of fluo-
rescence from SpoIIIE-GFP with that from
FM4-64 and DAPI staining. (F-H) The left-
hand column shows fluorescence from SpoIIIE-
GFP, the middle column shows an overlay of
the SpoIIIE-GFP signal with FM4-64, and the
right-hand column shows an overlay of fluo-
rescence from SpoIIIE-GFP with that from
FM4-64 and DAPI staining. The yellow ovals
in (G) identify bipolar sporangia of the racA
mutant that failed to trap DNA in both fore-
spore compartments and therefore lacked
foci from SpoIIIE-GFP. The white oval in (G)
identifies a mutant sporangium that trapped
DNA in the forespore and, as a result, exhib-
ited a SpoIIIE-GFP focus in the septum. In
cases (B, C, and G) in which a fluorescence
SpoIIIE-GFP focus was not observed (due to
absence of DNA transversing a septum), a
faint fluorescence signal from SpoIIIE-GFP
that colocalized with the cell membrane was
observed. This signal was difficult to capture
and cannot be readily seen in the fluores-
cence images shown here. The scale bars
correspond to 1 �m.
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the origin region to the cell pole or by specific DNATable 1. Frequency of SpoIIIE-GFP Focus Formation
sequences located in the region of the chromosome
that normally crosses the septum in wild-type sporulat-
ing cells. Rather, and in keeping with the proposal of
Sharp and Pogliano [11], it is likely that the orientation
of SpoIIIE molecules in the septum dictates the direction
of DNA movement (see also Chary and Piggot [12] for
an alternative point of view on the basis for directional-
ity). As pointed out by Sharp and Pogliano [11], the
number of SpoIIIE molecules is likely to be approxi-
mately eight times greater in the mother cell than in the
forespore compartment (due to the larger size of the
former), and this asymmetry in protein distribution might
contribute to the polarity of SpoIIIE molecules in the
septum (with severalfold more molecules being inserted

SpoIIIE-GFP-producing cells of a racA mutant (SB237) and a from the mother cell face of the septum than from the
spoIIAC mutant (SB243) were stained with the membrane stain FM4-

forespore face and thereby determining the direction of64 and with DAPI and examined by fluorescence microscopy at
translocation). Sharp and Pogliano [13] have suggestedhour 3 of sporulation (30�C). (Fluorescence microscopy was carried
that the polar-localized proteins MinC and MinD alsoout as described previously [22]). At least 250 sporangia were scored

for each strain. The table lists the percentages of sporangia that contribute to biasing the assembly of the translocation
exhibited the indicated patterns of SpoIIIE-GFP localization (open channel to the mother cell face of the septum.
circles) observed with respect to chromosome trapping (grey) at In extension of these ideas, we propose that mole-
both poles, at one pole, or at neither pole of the sporangia.

cules of SpoIIIE are inserted into and throughout the
cytoplasmic membrane of the predivisional sporangium.
Next, when the polar septum is formed around the axial

second chance in DNA trapping, resulting in two types filament, SpoIIIE molecules diffuse into the septum
of bipolar sporangia: those that were successful in cap- where they coalesce around the trapped chromosome,
turing DNA in the second round of division and those assembling into a channel through which DNA will be
that lack DNA in both polar compartments [6]. The local- translocated (Figure 2). The cytoplasmic domain of a
ization of SpoIIIE-GFP was especially revealing in the related protein TrwB (involved in DNA conjugation in E.
case of such bipolar mutant sporangia. When one of coli) has been crystallized and shown to form a hexa-
the two polar compartments contained DNA, a SpoIIIE- meric ring [14]. Thus it is possible that the SpoIIIE chan-
GFP focus was present in the polar septum that had nel is similarly composed of a single ring or a series of
trapped a chromosome, but not in the distal septum stacked rings (Figure 2). We assume that the bright focus
that had not (Figure 1D, Table 1). When neither polar observed with SpoIIIE-GFP contains most of the SpoIIIE
septum had trapped a chromosome, then neither polar molecules in the cell (based on the intensity of the signal
septum exhibited a fluorescent focus (Figures 1C and and the significant reduction in peripheral membrane
1G and Table 1). As a control, we examined SpoIIIE- signal). Therefore, we favor the model in which the chan-
GFP localization in sporangia that were mutant for the nel is composed of a series of rings rather than a single
pathway that normally prevents the formation of a sec- ring with six molecules. The stacked rings could sur-
ond polar septum in wild-type cells (due to a mutation round both of the double helices that transverse the
in the sporulation gene spoIIAC) [3]. Such a “disporic” septum or, alternatively, SpoIIIE might assemble into
mutant forms septa at both poles, and each polar sep- two adjacent channels, each separately trapping a sin-
tum traps a chromosome. The results show that a high gle double helix.
proportion of both polar septa of such disporic sporan- As reported previously [11] SpoIIIE-GFP can some-
gia exhibited a fluorescent focus (Figures 1E and 1H times be seen as colocalizing with the polar division
and Table 1). The minor class of disporic sporangia that septum early in sporulation. We have also observed this
contained only one focus (13%, Table 1) were ones that localization pattern both in wild-type cells and in RacA
had either finished translocating DNA or had not yet mutant cells in the presence and the absence of DNA
started pumping DNA into one of the polar compart- transversing the septum (data not shown). These obser-
ments. vations raise the possibility that association with the

Taken together, these results show that SpoIIIE-GFP cytokinetic ring of the division machinery is an intermedi-
localization depends on DNA trapping and are consis- ate step in the formation of the DNA translocation chan-
tent with the idea that molecules of the DNA translocase nel and that the channel is formed by constriction of the
assemble around the trapped chromosome where it cytokinetic ring. Conceivably, the channel is assembled
crosses the septum. Our findings also suggest that at through ring constriction in a manner that does not de-
least some DNA must be trapped in the forespore at the pend on DNA but is unstable in the absence of DNA
time of polar septation in order to initiate the assembly (and hence would not have been detected when chro-
of the translocase and hence for a chromosome to be mosomal DNA failed to transverse the septum). We note,
subsequently pumped into the forespore. An additional however, that association with the division machinery
conclusion from this work is that the direction of DNA is not essential for the proper localization of SpoIIIE-
translocation (into the forespore) is not determined by, GFP, as cells engineered to produce the SpoIIIE-GFP

after polar septation exhibited normal-looking foci ofor dependent upon, the RacA-mediated attachment of
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ple, E. coli contains a homolog of SpoIIIE called FtsK
that seems to be involved in linking chromosome segre-
gation to cell division [18]. FtsK is required for proper
chromosome segregation and for resolving chromo-
some dimers resulting from DNA replication [19–21].
Like SpoIIIE, however, FtsK is also a DNA-tracking en-
zyme [21], and in this capacity the E. coli protein is
thought to provide a backup mechanism that salvages
failures in chromosome portioning in which part of the
chromosome is caught in the division septum. Based
on our current findings, it is tempting to anticipate that
DNA trapping is a general mechanism for the assembly
and localization of DNA translocation channels created
by FtsK and other SpoIIIE-like proteins.
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