Article

https://doi.org/10.1038/s41564-024-01607-y

FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in *Staphylococcus aureus*

In the format provided by the authors and unedited

- 1 Supporting information for:
- 2 Title: FacZ is a GpsB-interacting protein that prevents aberrant division-site placement in
- 3 Staphylococcus aureus
- 4
- 5 **Authors:** Thomas M. Bartlett¹, Tyler A. Sisley¹, Aaron Mychack¹, Suzanne Walker¹, Richard W.
- 6 Baker^{2,3}, David Z. Rudner^{1*}, Thomas G. Bernhardt^{1,4*}
- 7

8 Affiliations:

¹Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston,
 Massachusetts, USA

- ¹¹ ²Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at
- 12 Chapel Hill, Chapel Hill, NC, USA
- ¹³ ³Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel
- 14 Hill, NC, USA
- ⁴Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, USA
- 16

17 ***To whom correspondence should be addressed:**

- 18
- 19 Thomas G. Bernhardt, Ph.D.
- 20 Harvard Medical School
- 21 Department of Microbiology
- 22 Boston, Massachusetts 02115
- 23 e-mail: thomas bernhardt@hms.harvard.edu
- 24
- 25 David Z. Rudner
- 26 Harvard Medical School
- 27 Department of Microbiology
- 28 Boston, Massachusetts 02115, USA
- 29 e-mail: david_rudner@hms.harvard.edu
- 30

32 Supplemental Table Legends

33 Table S1. Tn-seq meta-analysis.

Table summarizes the relevant metrics from Tn-Seq analysis of the initial transposon library, END 34 and CSD enrichments, and the ungated control sort. The numbers 2 and 3 refer to the sorting 35 36 round (e.g., CSD 2 has been subjected to two rounds of sorting increased light scattering). The total number of unique TA sites and the percentage of total TA sites in the genome with 37 transposon insertions are given, as well as median and mean number of insertions per gene in 38 39 the library following enrichments. The number of genes in each library hit at least once, twice, or five times is shown at right, along with the percent of annotated genes bearing at least that many 40 hits. Also, the number of genes meeting or exceeding these thresholds is compared to the 41 number of mutants in the NTML ordered transposon library², which is commonly used in S. 42 aureus research. 43

44

45 **Table S2. Tn-seq data for the END and CSD enrichments.**

Tn-seq results for the second and third rounds of sorting of the CSD and END enrichments. Relative enrichments compare the results of a given round of either CSD or END sorting to the ungated control. P-values are from Mann-Whitney U test. Genes are sorted by SAOUHSC locus number.

50

Table S3. Relative enrichment of transposon insertions in each gene following END and CSD
 enrichments versus the ungated control.

Tn-seq data showing the relative enrichments of the END and CSD sorts compared to an ungated
control. Genes are sorted by SAOUHSC locus number.

55

56 Table S4. PCA-adjusted Tn-Seq results.

Following 2D-PCA rotation of the CSD and END sorted data, each gene's enrichment was assigned
a new (X,Y) location, with X representing a genes relative enrichment along PC2, and Y
representing the relative enrichment along PC1. These data were used to plot the PCA panel in **Fig. S1**. Genes are sorted by SAOUHSC locus number.

61

62 Table S5. PCA-adjusted hit list.

The top 50 hits from the PCA analysis based on maximum relative enrichment along PC1. " Δ " indicates the change in PC1 or PC2 relative enrichment between rounds of sorting. "Mean fold increase" and "% increasing in enrichment" are metrics to assess whether hits identified by PCA in sort 2 increase in PC1 enrichment from additional rounds of CSD and END sorting. In general, hits identified by PC1 enrichment enrich further from additional sorts, where those from PC2 do not, consistent with PC1-enrichment serving as a proxy for mutual CSD and END enrichment. Genes are displayed by decreasing relative enrichment along PC1.

70

71 Table S6. ΔfacZ synthetic lethal Tn-seq hits

Tn-seq analysis of transposon libraries constructed in WT *S. aureus* [aTB015] versus one constructed in a $\Delta facZ$ [aTB259] strain. P-values are from Mann-Whitney U test. Genes are sorted by increasing $\Delta facZ$:WT relative enrichment ratio.

75

76 Table S7. Annotated ΔfacZ synthetic lethal Tn-seq hits

Tn-seq analysis of transposon libraries constructed in WT *S. aureus* [aTB015] versus one constructed in a $\Delta facZ$ [aTB259] strain. P-values are from Mann-Whitney U test. Genes are sorted by increasing $\Delta facZ$:*WT* relative enrichment ratio. Only the top 50-most de-enriched loci from the $\Delta facZ$ synthetic lethal analysis are displayed; see **Table S6** for a complete list of unannotated loci. Loci were identified with gene names and brief descriptions from AureoWiki. Genes previously described as having a role in cell wall biosynthesis, morphogenesis, cell division, and cell separation are highlighted in yellow.

<i>S. aureus</i> strain	Background	Relevant genotype	Source	Construction notes
aTB001	USA300	WT	Pang, T. et al. ³	-
aTB003	HG003	WT	Pang, T. et al. ³	-
aTB004	RN4220	WT	Pang, T. et al. ³	-
aTB015	RN4220	ΔattB(f11)::Orf5, pTM378	Wang, H. et al. ⁴	-
aTB016	RN4220	ΔattB(f11)::Orf5, pTM381	Wang, H. et al. ⁴	-
aTB033	RN4220	pTP044	Pang, T. et al. ³	-
aTB111	USA300	Tn5::USA300_0932 (SAOUHSC_00965)	Fey, P. et al. ²	-
aTB112	USA300	Tn5::USA300_1792 (SAOUHSC_01975)	Fey, P. et al. ²	-
aTB113	USA300	Tn5::USA300_2094 (SAOUHSC_02383)	Fey, P. et al. ²	-
aTB209	HG003	Δspa::kan	Pang, T. et al. ³	-
aTB219	HG004	pLOW-ftsZ-GFP	This study	pLOW-ftsZ-GFP transduced into aTB003
aTB243	RN4220	ΔfacZ::specR	This study	Homologous recombination of pMR91-Δ <i>facZ::specR</i> into aTB004
aTB251	HG003	ΔfacZ::specR	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ$::specR into aTB003
aTB259	RN4220	ΔfacZ::specR ΔattB(f11)::Orf5, pTM378	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ::specR$ into aTB015
aTB261	RN4220	ΔfacZ::specR ΔattB(f11)::Orf5, pTM381	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ::specR$ into aTB016
aTB263	RN4220	pGL485	This study	pGL485 was transformed into aTB004
aTB287	HG003	ΔsagB (lytD)	This study	Provided by Walker lab
aTB315	RN4220	pGL485 pLOW-facZ	This study	pLOW-facZ was transformed into aTB263
aTB316	RN4220	pGL485 pLOW-facZ-mCherry	This study	pLOW-facZ-mCherry was transformed into aTB263
aTB317	RN4220	pGL485 pLOW-facZ-6xHis	This study	pLOW-facZ-6xHis was transformed into aTB263
aTB339	RN4220	pTP044 pTP63d-facZ	This study	pTP63d-facZ was transformed into aTB044
aTB341	HG003	pTP63d-facZ	This study	Φ 85 lysate of aTB339 was used to transduce <i>pTP63-facZ</i> into aTB003
aTB347	HG003	pLOW-facZ	This study	Φ 85 lysate of aTB315 was used to transduce <i>pLOW-facZ</i> into aTB003
aTB348	HG003	pLOW-facZ-mCherry	This study	Φ 85 lysate of aTB316 was used to transduce <i>pTP63-facZ-mCherry</i> into aTB003
aTB349	HG003	pLOW-facZ-6xHis	This study	Φ 85 lysate of aTB317 was used to transduce <i>pTP63-6xHis</i> into aTB003
aTB356	HG003	ΔfacZ::specR pLOW-facZ	This study	Φ 85 lysate of aTB243 was used to transduce Δ <i>facZ::specR</i> into aTB347
aTB358	HG003	ΔfacZ::specR pLOW-facZ-mCherry	This study	Φ 85 lysate of aTB243 was used to transduce Δ <i>facZ::specR</i> into aTB348
aTB372	HG003	ΔfacZ::specR pTP63d-facZ	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ::specR$ into aTB341
aTB374	RN4220	pTP044 pTP63d-facZ-mCherry	This study	pTP63d-facZ-mCherry was transformed into aTB033
aTB376	RN4220	pTP044 pTP63-ftsZ-gfp	This study	pTP63-ftsZ-gfp was transformed into aTB033
aTB378	HG003	ΔezrA pTP63b-ezrA ΔfacZ::specR	This study	Φ 85 lysate of aTB243 was used to transduce Δ <i>facZ::specR</i> into aTB481
aTB390	HG003	ΔfacZ::specR pTP63d-facZ pLOW-FtsZ-GFP	This study	Φ 85 lysate of <i>RN4220 pLOW-ftsZ-GFP</i> was transduced into aTP372
aTB391	HG003	ΔezrA pTP63d-ezrA pLOW-FtsZ-GFP	This study	Φ 85 lysate of <i>RN4220 pLOW-ftsZ-GFP</i> was transduced into aTP481
aTB392	HG003	pTP63d-facZ-mCherry	This study	Φ 85 lysate of aTB374 used to transduce <i>pTP63-facZ-mCherry</i> into aTB003

84 Table S8: *S. aureus* strains used in this study

aTB394	HG003	pTP63d-ftsZ-GFP	This study	Φ 85 lysate of aTB376 used to transduce <i>pTP63-ftsZ-GFP</i> into aTB003
aTB411	HG003	Δspa::kan pLOW-01855-6xHis	This study	Transformed <i>pLOW-01855-6xHis</i> from RN4220 into aTB209
aTB453	HG003	$\Delta facZ::specR gpsB (T)6 → 5 (truncation 187)$	This study	Spontaneous suppressor of aTB251 sensitivity to PC190723
aTB476	HG003	ΔfacZ::specR gpsB(Y26*)	This study	Spontaneous suppressor of aTB251 sensitivity to PC190723
aTB478	HG003	ΔfacZ::specR gpsB (T)6-5 (trunc. 128)	This study	Spontaneous suppressor of aTB251 sensitivity to PC190723
aTB492	HG003	gpsB::Tn5	This study	Φ 85 lysate of NTML strain gpsB::Tn5(erm) transduced into aTB003
aTB497	HG003	gpsB::Tn5 ΔfacZ::specR	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ::specR$ into aTB492
aTB513	HG003	Δspa::kan pLOW-01855 pTP63-gpsB-FLAG	This study	Transformed pLOW-01855 from RN4220 into aTB209
aTB514	HG003	Δspa::kan pLOW-01855-6xHis pTP63-gpsB- FLAG	This study	Transformed <i>pLOW-01855-6xHis</i> from RN4220 into aTB209
aTB515	HG003	pTP63-gpsB-mNeon	This study	Φ 85 lysate of AGS063 was used to transduce <i>pTP63-gpsB-mNeon</i> into aTB003
aTB517	HG003	pTP63-gpsB-mNeon pLOW-01855-mCherry	This study	Φ 85 lysate of aTB316 was used to transduce <code>pLOW-facZ-mCherry</code> into aTB515
aTB519	HG003	pTP63-gpsB-mNeon ΔfacZ::specR	This study	Φ 85 lysate of aTB243 was used to transduce Δ <i>facZ::specR</i> into aTB515
aTB521	HG003	pKK30_RFP	This study	Φ 85 lysate of RN4220 <i>pKK30_RFP</i> was used to transduce pKK30_RFP into aTB003
aTB525	HG003	ΔgpsB::Kan	This study	Φ 85 lysate of TAS201 was used to transduce Δ <i>gpsB::Kan</i> into aTB003
aTB527	HG003	ΔfacZ::specR pKK30_RFP	This study	Φ85 lysate of aTB521 was used to transduce pKK30_RFP into aTB251
aTB529	HG003	ΔgpsB::kanR pKK30_RFP	This study	Φ85 lysate of aTB521 was used to transduce pKK30_RFP into TAS201
aTB540	HG003	ΔfacZ::specR pTP63-facZ ΔgpsB::kanR	This study	Φ 85 lysate of TAS201 was used to transduce $\Delta gpsB::kanR$ into aTB372
aTB542	HG003	ΔfacZ::specR ΔgpsB::kanR pKK30-RFP	This study	Φ 85 lysate of aTB243 was used to transduce Δ <i>facZ::specR</i> into aTB529
aTB549	HG003	ΔfacZ::specR pTP63-facZ pKK30-RFP	This study	Φ 85 lysate of aTB521 was used to transduce <i>pKK30_RFP</i> into aTB372
aTB565	RN4220	pLOW-facZ(3R-3D)-6xHis ∆facZ	This study	Plasmid transformed into aTB243
aTB568	RN4220	pLOW-facZ(R135D)-6xHis ∆facZ	This study	Plasmid transformed into aTB243
aTB570	RN4220	pLOW-facZ(R138D)-6xHis ∆facZ	This study	Plasmid transformed into aTB243
aTB572	RN4220	pLOW-facZ(R139D)-6xHis ∆facZ	This study	Plasmid transformed into aTB243
aTB574	RN4220	pLOW-facZ(R160D)-6xHis ∆facZ	This study	Plasmid transformed into aTB243
aTB632	HG003	pTP63-gpsB-FLAG	This study	Provided by Walker lab
aTB643	RN4220	pLOW-ftsW-GFP	This study	pLOW-ftsW-GFP transformed into aTB004
aTB645	RN4220	pLOW-GFP-pbpA	This study	pLOW-GFP-pbpA transformed into aTB004
aTB649	HG003	рТР63-gpsB-FLAG ΔfacZ::specR	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ::specR$ into aTB632
aTB651	HG003	pLOW-facZ(3R-3D)-6xHis	This study	Φ 85 lysate of aTB565 transduced into aTB251
aTB663	HG003	gpsB::Tn5 ∆ezrA::kanR pTP63-ezrA	This study	Φ 85 lysate of NTML strain gpsB::Tn5(erm) transduced into aTB264
aTB665	HG003	pLOW-GFP-pbpA	This study	Φ 85 lysate of aTB645 was used to transduce <code>pLOW-GFP-pbpA</code> into aTB251
aTB666	HG003	pLOW-ftsW-GFP	This study	Φ 85 lysate of aTB643 was used to transduce <code>pLOW-ftsW-GFP</code> into aTB251
aTB673	HG003	ΔfacZ pLOW-GFP-pbpA	This study	pLOW-GFP-pbpA purified from aTB645 and transformed into aTB251
aTB675	HG003	ΔfacZ pLOW-ftsW-GFP	This study	pLOW-ftsW-GFP purified from aTB643 and transformed into aTB251
aTB679	HG003	gpsB::Tn5 ΔezrA::kanR pTP63-ezrA ΔfacZ	This study	Φ 85 lysate of aTB243 was used to transduce $\Delta facZ::specR$ into aTB663
aTP071	RN4220	pTP10 integrant	This study	pTP10 transformed and integrated into RN4220; cloning intermediate for Δatl

aTP103	HG003	Δatl	This study	Φ 85 lysate of aTP071 was used to transduce $\Delta atl::kanR$ into HG003
aTP436	RN4220	pTP044 pTP63-ezrA	This study	pTP63-ezrA transformed into RN4220 pTP044
aTP455	RN4220	pTP89 integrant	This study	pTP10 transformed and integrated into RN4220; cloning intermediate for $\Delta ezrA$
aTP481	HG003	ΔezrA pTP63-ezrA	This study	Unpublished (Rudner collection)
TAS201	RN4220	ΔgpsB::Kan	This study	Provided by Walker lab
TAS079	RN4220	pLOW-gpsB-FLAG	This study	Provided by Walker lab
AGS063	RN4220	pTP63-gpsB-mNeon	This study	Provided by Walker lab
SB100	RN4220	pKK30-RFP	This study	Provided by Walker lab

All *S. aureus* strains used in the course of this study are noted in this table. See Methods section for a description of how strains

86 were made.

B. subtilis	Balavant Canatuma	Courses	
strain	Relevant Genotype	Source	Construction Notes
bDR11	WT	Youngman, P. et al. ⁵	-
bDR2229	amyE::P _{spac} -ftsZ-gfp	Ben-Yehuda, S. & Losick, R. ⁶	-
bDR2637	sacA::Pveg-mCherry(phleo)	Roney, I. & Rudner, D. ⁷	-
bDR2660	sacA::Pveg-BFP(phleo)	Roney, I. & Rudner, D. ⁷	-
bDR2789	sacA::Pveg-GFP(phleo)	Roney, I. & Rudner, D. ⁷	-
bTB013	ΔfacZ::ermR	This study	Marker crossed from deletion library into bDR11
bTB018	amyE::Pspac-ftsZ-gfp ∆facZ::ermR	This study	Marker crossed from deletion library into bDR2229
bTB039	sacA::Pveg-GFP(phleo) ∆facZ::erm	This study	Marker crossed from deletion library into bDR2789
bTB040	sacA::Pveg-BFP(phleo) ∆facZ::erm	This study	Marker crossed from deletion library into bDR2660
bTB041	sacA::Pveg-BFP(phleo) ΔfacZ::erm ΔgpsB::spec	This study	Marker crossed from deletion library into bTB040
bTB044	sacA::Pveg-GFP(phleo) ∆gpsB::spec	This study	Marker crossed from deletion library into bDR2789

87 Table S9: *B. subtilis* strains used in this study

All *B. subtilis* strains used in the course of this study are noted in this table. See Methods section for a description of how strains

89 were made.

91 Table S10: Plasmids used in this study

Plasmid	Relevant genotype & description	Marker	Source	Cut Sites/ ITA	Oligos
рТМ378	ts origin, HMAR1 C9 transposase	Kan	Wang, H. et al. ⁴	-	-
pTM381	ts origin, HMAR1 C9 transposase (truncated)	Kan	Wang, H. et al. ⁴	-	-
pTP044	L54a integrase-bearing plasmid	Tet	Pang, T. et al. ³	-	-
pLOW-ftsZ-GFP	<i>ftsZ-gfp</i> under P _{spac} promoter	Erm	Liew, A. et al. ⁸	-	-
pLOW-GFP-ftsW	<i>gfp-ftsW</i> under P _{spac} promoter	Erm	This study	Sall/BamHI	oTB689-692
pLOW-pbp1-GFP	<i>pbp1-gfp</i> under P _{spac} promoter	Erm	This study	Sall/BamHI	oTB699-702
pGL485	High-copy plasmid constitutively expressing Lacl	Cm	Liew, A. et al. ⁸	-	-
рКК30	dsRed, constitutively expressed red fluorescence	Tmp	Rodriguez, M. et al. ⁹	-	-
pLOW-facZ	facZ under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ-mCherry	facZ-mCherry under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ-6xHis	facZ-6xHis under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ(R135D)-6xHis	facZ(R135D)-6xHis under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ(R138D)-6xHis	<i>facZ(R138D)-6xHis</i> under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ(R139D)-6xHis	<i>facZ(R139D)-6xHis</i> under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ(R160D)-6xHis	<i>facZ(R160D)-6xHis</i> under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-facZ(3R-3D)-6xHis	facZ(R135D, R138D, R160D)-6xHis under P _{spac} promoter	Erm	Synthesized	-	-
pLOW-gpsB-GFP	gpsB-mNeon under P _{spac} promoter	Erm	Walker lab	-	-
pTP63-lacZ	<i>lacZ</i> under P _{tet} promoter	Cm	Pang, T. et al. ³	-	-
pTP63-ezrA	ezrA under P _{tet} promoter	Cm	Rudner lab, unpublished	-	-
pTP63-facZ	facZ under P _{tet} promoter	Cm	This study	Kpnl/EcoRl	oTB561, 562
pTP63-facZ-mCherry	<i>facZ-mCherry</i> under P _{tet} promoter	Cm	This study	KpnI/EcoRI	oTB563, 564
pTP63-gpsB-mNeon	gpsB-mNeon-FLAG under P _{tet} promoter	Cm	This study	ITA	AGS059-064
pTP63-ftsZ-GFP	<i>ftsZ-GFP</i> under P _{tet} promoter	Cm	This study	Kpnl/EcoRl	oTB566, 568
pMR91-∆facZ::specR	1.5 kb flanking sequence of <i>facZ</i> interrupted with <i>specR</i> marker, constitutive mScarlett, ts origin	Erm, Spec	This study	ITA	oTB490, 491, 492, 493
pLOW-gpsB-FLAG	gpsB-FLAG under P _{spac} promoter	Erm	This study	Sall/BamHI	oTS079, 80
pSUMO-FacZ 3x(127-146)	Purification plasmid for His-SUMO-tagged $FacZ_{(127-146)}$	Kan	This study	ITA	oRWB137, oRWB138

	pSUMO-GpsB (1-75)	Purification plasmid for His-SUMO-tagged GpsB FacZ $_{(1-75)}$	Kan	This study	ITA	oRWB123, oRWB124	
92	All plasmids produce	ed in the course of this study were made	by isoth	ermal assembly (ITA) or re	striction digest a	and ligation using	
93	pairs of restriction enzymes, as noted in this table. Plasmids were isolated from and are stored in either DH5α or BL21(DE3) <i>E. coli</i>						
94	strains, and are avai	lable upon request.					

Table	Name	Sequence	Purpose
S11:			
Oligos			
Ungos			
used in			
this			
studyOlig			
0			
oTB045	SpecR Seq F3	TGATTCCACGGTACCATTTCTTGC	Outward-facing
			sequencing primer
			for downstream
			homology arm of
			ΔfacZ::specR
оТВ065	SpecR Seq R4	AGTGCTCCCTGatGTCgacc	Outward-facing
			sequencing primer
			for upstream
			homology arm of
			ΔfacZ::specR
oTB169	pMR091 MCS seq F	GACTTTACGAAACACGGAAACCG	Inward-facing
			sequencing primer
			for upstream
			homology arm of
	N12001 N400 D		ΔfacZ::specR
018170	pMR091 MCS seq R	atcagttcattgctcacgatatgtg	Inward-facing
			sequencing primer
			for downstream
oTP102			Golopy DCD for orrA
016192	EZTA CPCK F		deletion
oTB102			
018195			deletion
oTB/10	pTD62 cDCP E		Colony PCP for nTP62
010410	pros_crck_r		insert
oTB411	nTP63 cPCB B		Colony PCR for nTP63
			insert
oTB416	del Atl cPCR F1	GGCGAAGTCGGCAAATACTTCG	Colony PCR for atl
010410			deletion
oTB417	del Atl cPCR R1	CGACGCATATCGTTGTAACACG	Colony PCR for atl
			deletion

oTB490	pMR091 01855 UpF	CGCTCGCGTATCGGTGATGGATCCCGATCAATTAGAGCAACTCGGTTATGTTTCG	Generate upstream
			flanking region of
			facZ for ITA
oTB491	pMR091 01855 UpR	cccggaaaaagagttgactaaatcaaTAAAAACGCCTCCTAATTAACATGTAATAATGTC	Generate upstream
			flanking region of
			facZ for ITA
oTB492	pMR091 01855 DnF	ccggtctatgttcatttagtcctccactaTTAATAATTAAACAAATGCACTTAAATGAGGTTGTTAC	Generate
			downstream flanking
			region of <i>facZ</i> for ITA
oTB493	pMR091 01855 DnR	gctctatataaaatatactcaaaatattatCCATGGtatGAATTCGCATTTGTTGTTTTTGAATTCTTATTACTAGTTTG	Generate
			downstream flanking
			region of <i>facZ</i> for ITA
oTB494	01855 up out F	GATGATGTTTGTGCATTTATGGTTAATGAAGG	Δ <i>facZ</i> sequencing
			primer
oTB495	01855 up in F	GATAATGCTGTTATTTATTGTGGGTGCAGG	Δ <i>facZ</i> sequencing
			primer
oTB496	01855 dn in R	GTTGCTGCGTCATTTGTATATCCTCC	Δ <i>facZ</i> sequencing
			primer
oTB497	01855 dn out R	CATAGCTTACTGCTATGATTGATTATTCAACG	Δ <i>facZ</i> sequencing
			primer
oTB498	Spec Out Seq R	CAATAAACCCTTGCATAGGGATAACTTCG	Δ <i>facZ</i> sequencing
			primer
oTB499	Spec Out Seq F	CGTTACGTTATTAGTTATAGTTATTATAACATGTATTCACG	Δ <i>facZ</i> sequencing
			primer
oTB500	Spec Out Seq R2	GCAGTTCGTAGTTATCTTGGAGAGAATATTGAATG	Δ <i>facZ</i> sequencing
			primer
oTB501	Spec Out Seq F2	GTGTAAACCTATTCATTGTTTTAAAAATATCTCTTGCC	Δ <i>facZ</i> sequencing
			primer
oTB513	01855 outside f	GTTGATTTTATCAAACAACAAAGAGAACCGG	Colony PCR for <i>facZ</i>
			deletion
oTB514	01855 outside r	GGTAAGCACCTGAATGCCTACC	Colony PCR for <i>facZ</i>
	-		deletion
oTB538	pLOW MCS seq f1	GACTTTATCTACAAGGTGTGGC	Colony PCR for pLOW
			insert
oTB539	pLOW MCS seq f2	atcctctagagtcaattgtgagcgc	Colony PCR for <i>pLOW</i>
			insert
oTB535	PolyG-1st-1 primer	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGGGGGGG	Tn-seq primer (first
			PCR)
oTB536	Mariner PCR1	GCCATCTATGTGTCTAGAGAC	Tn-seq primer (first
			PCR)

oTB537	Rnd2_Staph_IL	AATGATACGGCGACCACCGAGATCTACACTCTTTCGGGGGACTTATCAGCCAACCTG	Tn-seq primer
			(second PCR)
OTB538	pLOW MCS seq 11	GACITTATCIACAAGGIGIGGC	Colony
			PCR/sequencing
			primer for <i>pLOW</i>
			constructs
oTB540	pLOW MCS seq r1	TTCAGGCTGCGCAACTGTTG	Colony
			PCR/sequencing
			primer for <i>pLOW</i>
			constructs
oTB545	pGL485 fwd	taatgtATCGATaataatggtttcttagacg	Colony PCR for
			pGL485
oTB546	pGL485 rev	tattatGTCGACagtcggcattatctc	Colony PCR for
			pGL485
oTB561	pTP063d-01855 f	acaTAAGGAGGaGGTACCatgGATTGGATTTTACCAATTGCTGG	Subclone <i>facZ</i> into
			pTP63 vector; Kpnl
			cut site
oTB562	pTP063d-01855 r	CCACCTGGAATTCttaTTTATCTACTCTAGAAGTATAGCTATGATTTGCATCAGTTGC	Subclone <i>facZ</i> into
			pTP63 vector; EcoRI
			cut site
oTB563	pTP063d-01855-mCh f	AGGAGGaGGTACCatgGATTGGATTTTACCAATTGCTGG	Subclone facZ-
			mCherry into pTP63
			vector; Kpnl cut site
oTB564	pTP063d-01855-mCh r	CACCTGGAATTCCttaGGATCCGCCAGCACCTTTG	Subclone facZ-
			mCherry into pTP63
			vector; EcoRI cut site
oTB566	FtsZ-GFP KpnI F	GGAGGaGGTACCATGTTAGAATTTGAACAAGGATTTAATCATTTAGCG	Subclone ftsZ-GFP
			into pTP63 vector;
			Kpnl cut site
oTB568	FtsZ-GFP EcoRI R	GAACGTCTTTCTTCTCTATTTCTAATGAAGC	Subclone ftsZ-GFP
			into pTP63 vector;
			EcoRI cut site
oTB595	GpsB cPCR F	GTTCTTCAAGCAGATGTTAGTTGATTTTATGG	Colony PCR for
			inactivation of gpsB
oTB596	GpsB cPCR R	GGACTTTCCTCTATATAATATAGCGATTACCC	Colony PCR for
			inactivation of gpsB
oTB597	GpsB Seq F	GTGATAAATTAAAAAATGTAGGAGGCGTCC	Colony PCR for
			inactivation of gpsB
oTB598	GpsB Seq R	CTTTCTTAGTTATCGCCTGACAATCTGGC	Colony PCR for
			inactivation of gpsB

oTB599	GpsB cPCR F	GGATAAAACAAACTATACTTGTGATATTGTG	Colony PCR for
			inactivation of gpsB
оТВ600	GpsB cPCR R	CAATCATCTCAGACTGTGTGAGC	Colony PCR for
			inactivation of gpsB
oTB689	pLOW GFP Nterm ITA F	cctgcaggcatgcctgcagGTCGACacaTAAGGAGGaGGTACCATGAGTAAAGGAGAAGAACTTTTCACTGG	Generate GFP
			fragment for ITA of
			GFP-Pbp1
оТВ690	pLOW GFP Nterm ITA R	CAGACCAGCCGGACCCTCGAGTTTGTATAGTTCATCCATGCCATGTGTAATCC	Generate GFP
			fragment for ITA of
			GFP-Pbp1
oTB691	Linker-PBP1 ITA F	CTCGAGGGTCCGGCTGGTCTGATGGCGAAGCAAAAAATTAAAAATTAAAAAAAA	Generate Pbp1
			fragment for ITA of
			GFP-Pbp1
oTB692	PBP1-pLOW ITA R	GAATTCgagctcgcccggGGATCCTTAGTCCGACTTATCCTTGTCAGTTTTACTGTCAG	Generate Pbp1
			fragment for ITA of
			GFP-Pbp1
oTB699	GFP pLOW Cterm ITA F	ggtggtagtggtggtagtggtggtATGAGTAAAGGAGAAGAACTTTTCACTGG	Generate GFP
			fragment for ITA of
			FtsW-GFP
оТВ700	GFP pLOW Cterm ITA R	gccagtGAATTCgagctcgcccggGGATCCTTATTTGTATAGTTCATCCATGCCATGTGTAATCCC	Generate GFP
			fragment for ITA of
			FtsW-GFP
oTB701	pLOW-ftsW ITA F		Generate FtsW
		AAAACC	fragment for ITA of
			FtsW-GFP
018/02	ftsW-linker ITA R		Generate FtsW
			fragment for ITA of
4000	TDC2 backbara 5		FTSW-GFP
AG559	pTP63 backbone F	GAATTCCAGGTGGCACTTTCG	Amplification of
10560	nTR62 backbong R	CCTACCATCATACTCTATCAATCA	Amplification of
AGSOU		GUTACCATCATACICIATCAATGA	Amplification of
AG\$61	GpcR E		Conorato CosP
A0301	арзы	GAGTATGATGGTACCglilliaalgaggiggaaaaaATGTCAGATGTTTCATTGAAAT	fragment for ITA of
			GnsB-mNeon
AG\$62	GnsB B	ΔGCTCCΔCCΔGCGCTΔCCΔCCTTTΔCCΔΔΔTΔCΔGCTTTTTCT	Generate GnsB
A0302			fragment for ITA of
			GnsB-mNeon
AG\$63	mNeonGreen F	Δοσοστασταστασταστασταστασταστασταστασταστασ	Generate mNeon
			fragment for ITA of
			GnsB-mNeon

AGS64	mNeonGreen R	TGCCACCTGGAATTCTTActtgtcgtcatcgtctttgtagtcTTTATACAACTCATCCATTCCCAT	Generate mNeon fragment for ITA of
			GpsB-mNeon
oTS079	rbs _{rpoB} -GpsB F	GCAGGTCGACCATAATTTTTGAGGGGTGAATCTGTATGTCAGATGTTTCATTGAAATTATCA	Generate GpsB-FLAG
			insert
oTS080	GpsB-FLAG	CCCGGGGATCCTTACTTGTCGTCATCGTCTTTGTAG	Generate GpsB-FLAG
			insert
AMo67	gpsB_Wanner_KO_30H_U_o	AAGATCAAAGTTTCTAATGAGGTGGAAAAA CATAAAAACAACTCGTAGCTTATCAAAG	Generate fragment
	67		for amplifying KanR
			marker (for deleting
			gpsB)
AMo68	gpsB_Wanner_KO_30H_D_o	GTAAGACAGTTAAACTTTTGTATTTAGTAA CAATGACCTAAGAGGTGTGG	Generate fragment
	68		for amplifying KanR
			marker (for deleting
			gpsB)
oRWB123	GpsB SUMO Fwd	TGAACAGATTGGCGGCATGTCAG	Insert for pSUMO-
			FacZ 3x(127-146)
oRWB124	GpsB 75 SUMO Rev	catggatccttattacgtagcaacacgaaggcgaag	Insert for pSUMO-
			FacZ 3x(127-146)
oRWB125	Sumo-FacZ 127 Fwd	TgaacagattggcggcGAAATTGCAGATAAGTGGCAA	Insert for pSUMO-
			GpsB(1-75)
oRWB126	Sumo-FacZ 145 Rev	ccatggatccttattaTGCCTTGTAGTTTGCAGATCC	Insert for pSUMO-
			GpsB(1-75)

96 All oligos used in the course of this study are noted in this table.

- 98 References
- 99
- Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: interactive protein feature
 visualization and integration with experimental proteomic data. *Bioinformatics* 30, 884 886, doi:10.1093/bioinformatics/btt607 (2014).
- Fey, P. D. *et al.* A Genetic Resource for Rapid and Comprehensive Phenotype Screening of
 Nonessential Staphylococcus aureus Genes. *mBio* 4, e00537-00512,
 doi:doi:10.1128/mBio.00537-12 (2013).
- Pang, T., Wang, X., Lim, H. C., Bernhardt, T. G. & Rudner, D. Z. The nucleoid occlusion
 factor Noc controls DNA replication initiation in Staphylococcus aureus. *PLOS Genetics* 13,
 e1006908, doi:10.1371/journal.pgen.1006908 (2017).
- 109 4 Wang, H., Claveau, D., Vaillancourt, J. P., Roemer, T. & Meredith, T. C. High-frequency
- 110 transposition for determining antibacterial mode of action. *Nature Chemical Biology* 7,

111 720-729, doi:10.1038/nchembio.643 (2011).

- Youngman, P. J., Perkins, J. B. & Losick, R. Genetic transposition and insertional
 mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. *Proc Natl Acad Sci U S A* 80, 2305-2309, doi:10.1073/pnas.80.8.2305 (1983).
- Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like
 intermediate of the cytokinetic protein FtsZ. *Cell* 109, 257-266, doi:10.1016/s00928674(02)00698-0 (2002).
- 118 7 Roney, I. J. & Rudner, D. Z. Two broadly conserved families of polyprenyl-phosphate
 119 transporters. *Nature* 613, 729-734, doi:10.1038/s41586-022-05587-z (2023).

- Liew, A. T. F. *et al.* A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. *Microbiology* **157**, 666-676, doi:https://doi.org/10.1099/mic.0.045146-0 (2011).
- 123 9 Rodriguez, M. D., Paul, Z., Wood, C. E., Rice, K. C. & Triplett, E. W. Construction of Stable
- 124 Fluorescent Reporter Plasmids for Use in Staphylococcus aureus. *Frontiers in* 125 *Microbiology* **8**, doi:10.3389/fmicb.2017.02491 (2017).