Supplementary Information For:

MacP bypass variants of Streptococcus pneumoniae PBP2a suggest a conserved mechanism for the activation of bifunctional cell wall synthases.

Authors: Caroline Midonet ${ }^{1}$, Sean Bisset ${ }^{3}$, Irina Shlosman , and Felipe Cava ${ }^{5,6}$, David Z .
Rudner ${ }^{1 *}$, and Thomas G. Bernhardt ${ }^{1,2^{*}}$.

Affiliations:

${ }^{1}$ Department of Microbiology
Harvard Medical School, Blavatnik Institute
Boston, Massachusetts 02115, USA
${ }^{2}$ Howard Hughes Medical Institute
${ }^{3}$ Department of Molecular Biology, Umeå University
SE-901 87, Umeå, Sweden.
${ }^{4}$ Department of Biological Chemistry and Molecular Pharmacology
Harvard Medical School, Blavatnik Institute
Boston, Massachusetts 02115, USA
${ }^{5}$ Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR).
${ }^{6}$ Science for Life Laboratory (SciLifeLab).
Department of Molecular Biology,
Umeå University, Sweden.
*To whom correspondence should be addressed
Thomas G. Bernhardt
Harvard Medical School
Department of Microbiology
Boston, Massachusetts 02115, USA
e-mail: thomas_bernhardt@hms.harvard.edu
David Z. Rudner
Harvard Medical School
Department of Microbiology
Boston, Massachusetts 02115, USA
e-mail: david_rudner@hms.harvard.edu

A

B

Figure S1. Schematic representation of the selection for PBP2a mutants that bypass the requirement for MacP. (A) Boxes depict viable (green) and non-viable (red) strains. PPB1a depletion and macP deletion are represented as translucent shapes. PBP2a mutants that bypass the requirement for MacP are shown with a yellow star. (B) Representative spot dilutions of the indicated strains on blood agar plates in the absence and presence of $200 \mu \mathrm{M} \mathrm{ZnCl}_{2}$. The data in the figure are from one of three biological replicates.
A

A75	V76	A77	K78	S79	T80	D84	K90	R92	D97	R98	E99	E100	K101
A75T	V76T	A77C	K78A	S79A	T80A	D84K	K90D	R92D	D97K	R98D	E99K	E100K	K101D
		A77D	K78D	\$79V	T80V			R92E			E99R	El00R	
		A77E											
		A77F											
		A77G											
		A77H											
		A771											
		A77K											
		A77L											
		A77M											
		A77N											
		A77P											
		A77Q											
		A77R											
		A77s											
		A77T											
		A77V											
		A77w											
		A77Y											

B

C

Figure S2. PBP2a variants tested for the ability to bypass MacP
(A) Table of the PBP2a variants generated by site-directed mutagenesis and tested for the ability to support growth of a $\Delta m a c P$ mutant upon depletion of PBP1a. Each mutant was tested for growth in strain Sp1047 ($\Delta p b p 1 a, ~ \Delta m a c P, ~ P z n-p b p 1 a, ~ \Delta p b p 2 a) ~ b y ~$ introducing the indicated pbp2a allele. Mutants that were unable to sustain growth when PBP1a was depleted are shown in black. Mutants that could bypass MacP are shown in
green. (B) Structural model of PBP2a with predicted local distance difference test (pLDDT) for all residues in the predicted structure. Low (red) to high (blue) confidence is indicated. The predicted alignment error (pAE) plots for the top 5 models generated. (C) Representative spot dilutions of the indicated strains on blood agar plates in the absence and presence of ZnCl_{2}. Mutants K 183 I and E 325 D also bypass MacP requirements. Data in panel C are from one of three biological replicates.

Figure S3. Analysis of PBP2A in vivo and in vitro.
(A) Table documenting the relative amounts of PBP2a in the indicated strains. Immunoblots from three biological replicates were analyzed, and the intensities (arbitrary units) of PBP2a and the non-specific (n.s.) bands were quantified using ImageJ. No significant enrichment was observed for $\Delta p b p 1 a, \Delta m a c P$, or $p b p 2 a(A 77 T)$ strains. However, PBP2a(A77T) levels were reduced in strains harboring MacP and PBP1A. (B) Representative streaks of the indicated strains on blood agar plates in the absence and presence of $200 \mu \mathrm{M} \mathrm{ZnCl}_{2}$. With the exception of wild-type (WT), the other strains lack pbp1a and pbp2a and harbor the Pzn promoter fused to pbp2a, halo-pbp2a, or halopbp2a(A77T). Expression of Halo-PBP2a variants supports growth in strains lacking pbp1a and pbp2a. (C) Representative image of SDS-PAGE gel in which cells harboring Halo-PBP2a variants were labeled with Janelia fluor 549 and lysates resolved by SDSPAGE and imaged directly using the Typhoon FLA9500. Cells grown in the absence or presence of $200 \mu \mathrm{M} \mathrm{ZnCl} 2$ were incubated with the Janelia fluor 549 (50 nM for 15 min) prior to lysis. (D) InstantBlue-stained gel of the purified His-PBP2a variants used in the in vitro glycosyltransferase assay. The catalytic mutants in the transpeptidase domain (S410A) and the glycosyltransferase domain (E131A) are labeled TP- and GT-, respectively. (E) Representative blot of glycan strand polymerization assay using purified proteins and lipid II. The reaction products and remaining substrate were labeled with
biotinylated D-lysine using S. aureus PBP4, resolved by SDS-PAGE, transferred to PVDF, and detected by IRDye 800CW Streptavidin. Free lipid II and glycan strands (PG) are indicated. Some PBP4 and PBP2a become biotinylated in the labeling reaction and are detected by IRDye 800CW Streptavidin. Timepoint: 2 min. A final concentration of $0.5 \mu \mathrm{M}$ of PBP2a variants and no cephalexin were used for this specific control.

Figure S4 Analyses of strains harboring pbp2A(WT) and pbp2A(A77T)
(A) Growth curve in THY medium of the indicated strains. (B) Bar graph shows the percentage of cell wall crosslinking in the indicated strains. The difference is statistically significant (*) with a p-value <0.05 (p-value $=0.018$ for the monomers plot; p-value $=0.048$ for the trimers plot). Monomers, dimers, and trimers refer to uncrosslinked, singly crosslinked, or doubly crosslinked muropeptides detected in the muropeptide analysis of Sp peptidoglycan.

Figure S5: Predicted local difference test and alignment error for the AlphaFoldpredicted complex of PBP2a and the transmembrane segment of MacP. Structural model of the PBP2a and the transmembrane segment of MacP with predicted local distance difference tests (pLDDT) per position mapped onto predicted complex (left). Red-white-blue colors indicate low to high confidence. The predicted alignment error in \AA of all residues against all residues for the top-ranked model is shown on the right. Given that the extreme N -terminus of PBP2a is unlikely to fold back into the membrane as predicted by AlphaFold, we eliminated this portion of the protein structure from the models shown in other figures for clarity.

Table S1

PBP2a suppressor number	number of mutations	change(s)
3a	4	A167V, G577A, T593T, A699V
29a	6	A105T, Y136Y, N331K, K392K, S404A, E705V
$30 a$	2	A77T, P375S
39a	1	A77T
$41 a$	2	A77T
44a	2	D84N, T571S
4b	1	E325D
$9 b$	2	D84G, N342N, L477F, A719V
14b	4	A77T, P375S
17b	1	A73S, G385A, S535C, P653P
$21 b$	2	A77T, P375S
4c	2	A77T, P375S
14c	-	T571S, poor sequencing
16c	2	K183I, P673L
56c		

TableS1: Isolated variants of PBP2a that promote growth upon PBP1a depletion in absence of MacP. Red: A77T mutation with the highest occurrence; blue: substitutions also tested as a single change (D84K and K183I) in validation studies.

Table S2

WT	D39 4 cps	lab collection
6	D39 $4 c p s, \Delta p b p 2 a:: E r m$	Fenton A. et al. 2018
9	D39 $\Delta c p s, \Delta p b p 1 a:: K a n$	Fenton A. et al. 2016
30	D39 $4 c p s, \Delta p b p 1 a:: K a n, \Delta b g a A:: P z n-p b p 1 a-T e t, ~ \Delta p b p 2 a: E r m ~$	Fenton A. et al. 2018
36	D39 $4 c p s, \Delta p b p 1 a:: K a n, ~ \Delta b g a A:: P z n-p b p 1 a-T e t ~$	Fenton A. et al. 2018
94		Fenton A. et al. 2018
106		Fenton A. et al. 2018
1047	D39 $\Delta c p s, \Delta p b p 1 A: k a n, \Delta b g a A:: P z n-p b p 1 A: t e t, ~ \triangle m a c P: S p e c, ~ \triangle p b p 2 a: e r m ~$	This study
1064		This study
1074	D39 $\triangle c p s, \Delta p b p 2 a:: p b p 2 a(A 77 T)-C m$	This study
1075		This study
1082	D39 4 cps, Δ macP::Spec, 4 pbp2a::pbp2a(A77T)-Cm	This study
1083	D39 $\triangle c p s, \Delta p b p 2 a:: p b p 2(A 77 T) ~ C m R, ~ \triangle S P D _0876(m a c P):: S p e c R ~$	This study
1086	D39 $4 c p s, \Delta p b p 1 a:: K a n, \Delta p b p 2 a:: p b p 2 a(A 77 T)-C m ~$	This study
1087		This study
1094	D39 $\triangle c p s, 1526: P F 6-o p t R B S-C F P: 1527 ~ K a n R ~$	This study
1095	D39 $4 c p s, 1526: P F 6-o p t R B S-C F P: 1527 ~ K a n R, ~ p b p 2 a(A 77 T)-C m R ~$	This study
1115		This study
1116	D39 $\Delta c p s, \Delta p b p 1 A:: K a n, ~ \Delta b g a A:: P z n-p b p 1 A-T e t R, ~ \triangle m a c P:: S p e c, ~ \Delta p b p 2 a:: p b p 2 a(A 77 V)-C m R ~$	This study
1117	D39 $\Delta c p s, \Delta p b p 1 A:: K a n, ~ \triangle b g a A:: P z n-p b p 1 A-T e t R, ~ \triangle m a c P:: S p e c, ~ \triangle p b p 2 a:: p b p 2 a(A 77 P)-C m R ~$	This study
1118	D39 $4 c p s, \Delta p b p 1 A:: K a n, ~ \Delta b g a A:: P z n-p b p 1 A-T e t R, ~ \triangle m a c P:: S p e c, ~ \triangle p b p 2 a:: p b p 2 a(V 76 T)-C m R ~$	This study
1119	D39 $\Delta c p s, \Delta p b p 1 A:: K a n, ~ \Delta b g a A:: P z n-p b p 1 A-T e t R, ~ \triangle m a c P:: S p e c, ~ \triangle p b p 2 a:: p b p 2 a(R 92 E)-C m R ~$	This study
1120		This study
1121		This study
1124	D39 $4 c p s, \Delta p b p 2 a:: e r m, ~ \Delta b g a A:: P z n-H A L O-p b p 2 a-t e t R ~$	This study
1146	D39 $4 c p s, \Delta p b p 2 a:: 2 r m, ~ \Delta b g a A:: P z n-H A L O-p b p 2 a-t e t R, ~ \Delta p b p 1 a:: k a n R ~$	This study
1148	D39 $\Delta c p s, \Delta p b p 2 a:: e r m, ~ \Delta b g a A:: P z n-H A L O-p b p 2 a(A 77 T)-t e t R ~$	This study
1150	D39 $\Delta c p s, \Delta p b p 2 a:: e r m, ~ \triangle b g a A:: P z n-H A L O-p b p 2 a(A 77 T)-t e t R, ~ \triangle p b p 1 a:: k a n R ~$	This study
1158	D39 $4 c p s, \Delta p b p 1 A:: K a n, \Delta b g a A:: P z n-p b p 1 A-T e t R, ~ \triangle m a c P:: S p e c, ~ \Delta p b p 2 a:: p b p 2 a(E 325 D)-C m R ~$	This study
1160	D39 $4 c p s, \Delta p b p 1 A:: K a n, \Delta b g a A:: P z n-p b p 1 A-T e t R, ~ \triangle m a c P:: S p e c, ~ \triangle p b p 2 a:: p b p 2 a(K 183 I)-C m R ~$	This study

Table S2: $S p$ strains used for this study.

Table S3

plasmid	genotype	Reference
pCCM60	ori pACYC, \triangle pbp2a: Pnative-pbp2a-cat, bla	This study
pCCM64	ori pACYC, \triangle pbp2a: Pnative-pbp2a(A77T)-cat, bla	This study
pMFS8	ori pBR/colE1, kanR, laclq, PT7:His-pbp2a	This study
pCCM97	ori pBR/colE1, kanR, laclq, PT7:His-pbp2a(A77T)	This study
pCCM98	ori pBR/colE1, kanR, laclq, PT7:His-pbp2a_TP- (S410A)	This study
pCCM99	ori pBR/colE1, kanR, laclq, PT7:His-pbp2a_GT- (E131A)	This study
pCCM114	ori pBR/colE1, kanR, laclq, PT7:His-pbp2a(D84K)	This study
Genscript synthetized PBP2a(A77I)	ori pACYC, 4 pbp2a: Pnative-pbp2a(A771)-cat, bla	This study
Genscript synthetized PBP2a(A77V)	ori pACYC, \triangle pbp2a: Pnative-pbp2a(A77V)-cat, bla	This study
Genscript synthetized PBP2a(A77P)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77P)-cat, bla	This study
Genscript synthetized PBP2a(V76T)	ori pACYC, Δ pbp2a: Pnative-pbp2a(V76T)-cat, bla	This study
Genscript synthetized PBP2a(R92E)	ori pACYC, Δ pbp2a: Pnative-pbp2a(R92E)-cat, bla	This study
Genscript synthetized PBP2a(D84K)	ori pACYC, Δ pbp2a: Pnative-pbp2a(D84K)-cat, bla	This study
Genscript synthetized PBP2a(R92D)	ori pACYC, Δ pbp2a: Pnative-pbp2a(R92D)-cat, bla	This study
Genscript synthetized PBP2a(A75T)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A75T)-cat, bla	This study
Genscript synthetized PBP2a(A77C)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77C)-cat, bla	This study
Genscript synthetized PBP2a(A77D)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77D)-cat, bla	This study
Genscript synthetized PBP2a(A77E)	ori pACYC, $\Delta \mathrm{pbp2a}$: Pnative-pbp2a(A77E)-cat, bla	This study
Genscript synthetized PBP2a(A77F)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77F)-cat, bla	This study
Genscript synthetized PBP2a(A77G)	ori pACYC, $\Delta \mathrm{pbp} 2 \mathrm{a}$: Pnative-pbp2a(A77G)-cat, bla	This study
Genscript synthetized PBP2a(A77H)	ori pACYC, \triangle pbp2a: Pnative-pbp2a(A77H)-cat, bla	This study
Genscript synthetized PBP2a(A77K)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77K)-cat, bla	This study
Genscript synthetized PBP2a(A77L)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77L)-cat, bla	This study
Genscript synthetized PBP2a(A77M)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77M)-cat, bla	This study
Genscript synthetized PBP2a(A77N)	ori pACYC, \triangle pbp2a: Pnative-pbp2a(A77N)-cat, bla	This study
Genscript synthetized PBP2a(A77P)	ori pACYC, $\Delta \mathrm{pbp} 2 \mathrm{a}$: Pnative-pbp2a(A77P)-cat, bla	This study
Genscript synthetized PBP2a(A77Q)	ori pACYC, $\Delta \mathrm{pbp} 2 \mathrm{a}$: Pnative-pbp2a(A77Q)-cat, bla	This study

Genscript synthetized PBP2a(A77R)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77R)-cat, bla	This study
Genscript synthetized PBP2a(A77S)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77S)-cat, bla	This study
Genscript synthetized PBP2a(A77W)	ori pACYC, Δ pbp2a: Pnative-pbp2a(A77W)-cat, bla	This study
Genscript synthetized PBP2a(A77Y)	ori pACYC, $\Delta \mathrm{pbp2a}$: Pnative-pbp2a(A77Y)-cat, bla	This study
Genscript synthetized PBP2a(K78A)	ori pACYC, Δ pbp2a: Pnative-pbp2a(K78A)-cat, bla	This study
Genscript synthetized PBP2a(K78D)	ori pACYC, Δ pbp2a: Pnative-pbp2a(K78D)-cat, bla	This study
Genscript synthetized PBP2a(S79A)	ori pACYC, Δ pbp2a: Pnative-pbp2a(S79A)-cat, bla	This study
Genscript synthetized PBP2a(S79A)	ori pACYC, Δ pbp2a: Pnative-pbp2a(S79V)-cat, bla	This study
Genscript synthetized PBP2a(T80A)	ori pACYC, Δ pbp2a: Pnative-pbp2a(T80A)-cat, bla	This study
Genscript synthetized PBP2a(T80V)	ori pACYC, $\Delta \mathrm{pbp2a}$: Pnative-pbp2a(T80V)-cat, bla	This study
Genscript synthetized PBP2a(K90D)	ori pACYC, Δ pbp2a: Pnative-pbp2a(K90D)-cat, bla	This study
Genscript synthetized PBP2a(D97K)	ori pACYC, Δ pbp2a: Pnative-pbp2a(D97K)-cat, bla	This study
Genscript synthetized PBP2a(R98D)	ori pACYC, $\Delta \mathrm{pbp2a}$: Pnative-pbp2a(R98D)-cat, bla	This study
Genscript synthetized PBP2a(E99K)	ori pACYC, Δ pbp2a: Pnative-pbp2a(E99K)-cat, bla	This study
Genscript synthetized PBP2a(E99R)	ori pACYC, Δ pbp2a: Pnative-pbp2a(E99R)-cat, bla	This study
Genscript synthetized PBP2a(E100K)	ori pACYC, Δ pbp2a: Pnative-pbp2a(E100K)-cat, bla	This study
Genscript synthetized PBP2a(E100R)	ori pACYC, Δ pbp2a: Pnative-pbp2a(E100R)-cat, bla	This study
Genscript synthetized PBP2a(K101D)	ori pACYC, Δ pbp2a: Pnative-pbp2a(K101D)-cat, bla	This study
pCCM113	ori pACYC, Δ pbp2a: Pnative-pbp2a(K183I)-cat, bla	This study
pGD159	pACYC, SPD_1526- PF6 promoter-SCFP3A-aphA-3, SPD_1527	This study

Table S3: Plasmids Table. Plasmids highlighted in grey were ordered and mutagenized by Genscript.

Table S4

Oligonu- cleotide	Sequence (5'->3')	use
45	GAGGGAGGAAAGGCAGGA	construction pCCM60
46	CGCCGTATCTGTGCTCTC	construction pCCM60
388	TCATGACAGATGAAGCTTGGCAGACAATTGACGGCTTGACG	
G		

Table S4: Oligonucleotides/primers table

Table S5

strain	genotype	Reference
DH5 α גpir	endA1 hsdR17 glnV44 (= supE44) thi-1 recA1, gyrA96 relA1 80 dlac $\Delta(\operatorname{lacZ}) \mathrm{M15} \Delta($ lacZYAargF), U169 zdg-232::Tn10 uidA::pir+	Gibco BRL
Rosetta2(DE3)	F- ompT hsdSB(rB- mB-) gal dcm (DE3), pRARE2 (CamR)	Novagen
MMH594	Enterococcus faecalis EnGen0310	Huycke et al. 1991

Table S5: Other bacterial strains. DH5 α pir and Rosetta2(D33) are E.coli strains respectively used for cloning and proteins expression. MMH594 is an Enterococcus faecalis strain used for purification of lipid II.

