SUPPLEMENTAL INFORMATION

SpoVAF and FigP assemble into oligomeric ion channels that enhance spore germination

Yongqiang Gao, Jeremy D. Amon, Anna P. Brogan, Lior Artzi, Fernando H. Ramírez-Guadiana, Joshua C. Cofsky, Andrew C. Kruse, David Z. Rudner

This PDF file includes:

Supplemental Figures S1 - S20 Supplemental Table S1 - S3 Supplemental Methods Supplemental References

Figure S1 Gao et al.

Figure S1. Predicted local distance difference tests and alignment error for the AlphaFold-predicted 5AF monomer and oligomers. (A) Predicted local distance difference tests (pLDDT) per position mapped onto the 5AF model (left). Higher pLDDT (blue) corresponds to a more confident prediction. Predicted alignment error in Å of all residues against all residues for the top-ranked 5AF model (right). Low error (blue) corresponds to well-defined relative domain positions. (B) Predicted local distance difference tests (pLDDT) per position mapped onto the 5AF pentamer model (left); predicted alignment error in Å of all residues against all residues for the top-ranked model (right). (C) Predicted local distance difference tests (pLDDT) per position mapped onto 5AF hexamer (left); predicted alignment error in Å of all residues against all residues for the top-ranked model (right). The per-residue accuracy of the structures (pLDDT) and the estimate of the template modeling scores (pTM) for each model are shown below the predicted structures on the left.

Figure S2 Gao et al.

Figure S2. 5AF enhances germination induced by different nutrients. (A) Purified *B. subtilis* spores from the indicated strains were incubated with 10 mM each of asparagine, glucose, fructose, and K⁺ (AGFK) and DPA release was monitored over time. Spores lacking 5FA were delayed in DPA release, while spores lacking 5AEa behaved similarly to wild-type. **(B)** Germination of the same spores as in (A) was assayed using the loss of optical density as the spores transitioned from phase-bright to phase-dark. **(C)** The same spores as in (A) were analyzed for DPA release using 1 mM L-alanine. **(D)** Total DPA present in the purified spores used in the experiments shown in A-C. **(E)** Representative phase-contrast images of 30-hour sporulating cultures of the indicated strains. The total heat-resistant CFU on LB agar plates of each culture relative to wild-type is indicated below the images. The last two strains lack all 5 *gerA* family loci and are labeled Δger5. The receptor-less spores are defective in germination in the presence of nutrient-rich LB.

Figure S3A. Spores lacking 5AF are delayed in K⁺, Mg²⁺, and Ca²⁺/DPA release. (A) Total K⁺, Mg²⁺, Ca²⁺, and DPA in purified spores from the indicated strains determined by inductively coupled mass spectrometry (ICP-MS) or fluorescence with TbCl₃. All three strains have similar levels of these molecules. **(B-E)** Analysis of spore exudates after incubation with 10 mM L-alanine for the indicated times. K⁺, Mg²⁺, and Ca²⁺ were analyzed by ICP-MS and DPA was measured using fluorescence in the presence of TbCl₃. The percentage release at each time point, relative to the amount released by WT spores at 60 min, is shown. Spores lacking 5AF were delayed in K⁺ release **(B)**; in Mg²⁺ release **(C)**; in Ca²⁺ release **(D)**; and in DPA release **(E)**. In all cases, expression of 5AF *in trans* suppressed the defect.

Figure S3B *Gao et al.*

Figure S3B. Spores lacking 5AF are delayed in K⁺, **Mg**²⁺, **and Ca**²⁺/**DPA release.** This figure documents biological replicates of the data presented in Figure S3A. (**A**) Total K⁺, Mg²⁺, Ca²⁺, and DPA in purified spores from the indicated strains determined by inductively coupled mass spectrometry (ICP-MS) or fluorescence with TbCl₃. All three strains have similar levels of these molecules. (**B-E**) Analysis of spore exudates after incubation with 10 mM L-alanine for the indicated times. K⁺, Mg²⁺, and Ca²⁺ were analyzed by ICP-MS and DPA was measured using fluorescence in the presence of TbCl₃. The percentage release at each time point, relative to the amount released by WT spores at 60 min, is shown. Spores lacking 5AF were delayed in K⁺ release (**B**); in Mg²⁺ release (**C**); in Ca²⁺ release (**D**); and in DPA release (**E**). In all cases, expression of 5AF *in trans* suppressed the defect.

Figure S3C. Spores lacking 5AF are delayed in K⁺, **Mg**²⁺, **and Ca**²⁺/**DPA release.** This figure documents biological replicates of the data presented in Figure S3A. (**A**) Total K⁺, Mg²⁺, Ca²⁺, and DPA in purified spores from the indicated strains determined by inductively coupled mass spectrometry (ICP-MS) or fluorescence with TbCl₃. All three strains have similar levels of these molecules. (**B-E**) Analysis of spore exudates after incubation with 10 mM L-alanine for the indicated times. K⁺, Mg²⁺, and Ca²⁺ were analyzed by ICP-MS and DPA was measured using fluorescence in the presence of TbCl₃. The percentage release at each time point, relative to the amount released by WT spores at 60 min, is shown. Spores lacking 5AF were delayed in K⁺ release (**B**); in Mg²⁺ release (**C**); in Ca²⁺ release (**D**); and in DPA release (**E**). In all cases, expression of 5AF *in trans* suppressed the defect.

Figure S4. 5AF fusions are functional. (A) Purified *B. subtilis* spores from the indicated strains were incubated with 1 mM L-alanine and DPA release was monitored over time. Spores lacking 5FA were delayed in DPA release, while those in which 5AF or the indicated 5AF fusions were expressed *in trans* behaved similarly to wild-type. **(B)** Total DPA present in the purified spores used in the experiment shown in A.

Figure S5. Flow diagram depicting the screen for constitutively active SAF mutants that initiate premature germination. The *5AF* gene was PCR-mutagenized using error prone PCR and transformed into a Δ *5AF* Δ *sleB* mutant. The transformants were pooled and sporulated. The dormant phase-bright spores were separated from vegetative cells and spores that initiated germination on a Histodenz step-gradient. The material in the step was collected and treated with lysozyme followed by SDS to lyse the vegetative cells. Because the phase-grey/dark spores lack SleB they maintain their cortex peptidoglycan and coat and resist lysozyme-SDS treatment. The material was further purified on a second Histodenz step-gradient. The phase-grey/dark spores were collected and incubated with Ca²⁺/DPA to activate CwIJ-dependent degradation of the cortex and plated on LB agar. The colonies were pooled, and a second round of enrichment was performed. After two rounds of enrichment, the purified phase-grey/dark spores were plated on sporulation (DSM) agar. After 96 hours at 37 °C, individual colonies were screened by phase-contrast microscopy. Colonies with a high percentage of phase-grey/dark spores were colony-purified. The *5AF* gene was PCR amplified from these strains and Sanger sequenced.

Figure S6 Gao et al.

103%

0.45%

0.78%

В

А

Figure S6. Constitutively active 5AF mutants cause premature germination in the absence of the GerA family receptors. (A) Representative phase-contrast images of the indicated strains after 30 hours of sporulation. The constitutively active 5AF mutants cause premature germination in the presence and absence of the five GerA family receptor operons (Δ ger5). Heat resistant CFU relative to wild-type are shown below the images. All six strains are SleB+. (B) Representative fluorescence images of 5AF-GFP in dormant spores of the indicated strains. 5AF-GFP localizes in germinosome foci in the presence and absence of the GerA family receptors (Δger5).

Figure S7. Two AlphaFold-predicted conformations of the 5AF/FigP pentamer can explain the constitutive activity of 5AF mutants. In the closed conformation (left), 5AF's pore-forming helices (orange) are oriented such that L367 points into the lumen, forming a constriction in the pore. In open conformation (right), these same helices (yellow) have rotated (green arrows), widening the pore. The L367S substitution is predicted to cause ion leakage, either by removing the bulk of the pore-occluding sidechains or by abolishing the hydrophobic interactions between adjacent L367 sidechains that appear to stabilize the pore constriction. At the base of the pore-forming helix, A360 (pink) closely approaches I355 and V143 from two adjacent protomers. The A360V substitution is predicted to strengthen the hydrophobic interactions between the three sidechains in this region, stabilizing the widened-pore conformation and causing ion leakage. Predicted alignment error plots. Conformation 1 was predicted by AlphaFold model 5 (rank 5). Conformation 2 was predicted by AlphaFold model 4 (rank 1). The structures predicted by AlphaFold models 1 (rank 2), 2 (rank 4), and 3 (rank 3) all resembled Conformation 2.

Figure S8 Gao et al.

Figure S8. Spores with the channel narrowing 5AF(V371L) mutant are delayed in germination. (A) Total K⁺, Mg^{2+} , and Ca^{2+} in purified spores of the indicated strains were determined by inductively coupled mass spectrometry (ICP-MS). All five strains have similar levels of these ions. **(B-C)** Analysis of spore exudates at the indicated times after incubation with 10 mM L-alanine. **(B)** Mg^{2+} was analyzed by ICP-MS. **(C)** DPA was determined using fluorescence in the presence of TbCl₃. The percentage release at each time point, relative to the amount released by WT spores at 60 min, is shown. **(D)** The same spores as in (B) and (C) were analyzed for DPA release over time in a plate reader. Total DPA is shown to the right of graph. **(E)** The percentage drop in OD600 was analyzed from the same spores after L-alanine addition in a plate reader. The two channel-narrowing mutants 5AF(V371L) and 5AF(Q375L) phenocopy Δ 5AF.

Figure S9. Identification and initial characterization of the hits in the 5AF(A360V) suppressor screen. (A) Transposon (Tn) insertion profiles from four genomic regions are shown. Each line represents a Tn insertion site; its height reflects the abundance in the output libraries. The maximum number of reads was set to 10,000 for the regions with *ytpA*, *yktB*, *ymfD* and 2,000 for the region with *ymfJ*. Tn insertions in all four genes were overrepresented in the 5AF(A360V) library compared to WT. (B) Representative phase contrast images of sporulated cultures of strains harboring in-frame deletions of the indicated genes. All hits in the screen partially suppress the premature germination phenotype of 5AF(A360V). The percentage of heatresistance spores compared to wild-type are shown below the images. (C) Purified spores from the indicated strains were mixed with 1 mM L-alanine and DPA release was monitored over 90 minutes. All strains lacked 5AF(A360V) and, with the exception of Δ 5AF, contained a wild-type copy of 5AF. Total DPA in the purified spores is shown to the right.

Figure S10 Gao et al.

Figure S10. Double mutant analysis of the 5AF(V360A) suppressors. Purified spores of the indicated strains were mixed with 1 mM L-alanine and DPA release was monitored over 90 minutes. The $\Delta 5AF \Delta ytpA$ mutant was more impaired in germination than the single mutants, while the other double mutants resembled the $\Delta 5AF$ single mutant.

Figure S11 *Gao et al.*

Figure S11. Predicted local distance difference tests and alignment errors for the AlphaFold-predicted 5AF/FigP dimer and the 5AF/FigP pentamer of dimers. (A) Model of 5AF/FigP dimer (left). Predicted local distance difference tests (pLDDT) per position mapped onto the 5AF/FigP model (middle). Higher pLDDT (blue) corresponds to a more confident prediction. Predicted alignment error in Å of all residues against all residues for the top-ranked 5AF model (right). Low error (blue) corresponds to well-defined relative domain positions. (B) Model of 5AF/FigP pentamer of dimers (left). Predicted local distance difference tests (pLDDT) per position mapped onto the 5AF/FigP pentamer of dimers (left). Predicted local distance difference tests (pLDDT) per position mapped onto the 5AF/FigP pentamer of dimers model (left); predicted alignment error in Å of all residues against all residues for the top-ranked model (right). The per-residue accuracy of the structure (pLDDT) and the estimate of the template modeling score (pTM) for each model is shown below the predicted structures on the left.

Figure S12. AlphaFold-predicted model of 5AF and FigP pentamer of dimers as viewed in the membrane. (A) AlphaFold2-multimer model of the 5AF/FigP pentamer of dimers. 5AF protomers are shown in cyan and light/dark grey. FigP protomers are in purple. (B) Comparison of FigP/5AF interaction interface with GerAB/GerAA interaction interface.

Figure S13. The 5AF/FigP complex behaves like an ion channel when expressed in vegetatively growing cells. Representative fluorescence images of exponentially growing cultures of the indicated strains. Time (in min) after IPTG addition (50 μ M final) is indicated above each set of images. The upper panels show fluorescence of the potentiometric dye DiSC₃(5); the lower panels show propidium iodide (PI) staining. The two fields are from the same culture and timepoint but were stained and imaged separately. Phase-contrast images are shown for the same fields as the DiSC₃(5) fluorescence images to monitor cell lysis. The loss of membrane potential in cells expressing 5AF(L367S) and FigP occurs prior to loss of membrane integrity and cell lysis. Scale bar, 5 μ m.

P(xyl)-5AF-mYpet, P(IPTG)-figP (1mM IPTG)

P(xyl)-gerAA-mYpet, P(IPTG)-gerAB, P(IPTG)-gerAC (1mM IPTG)

adjusted

Figure S14. 5FA-mYpet/FigP fluorescent foci are similar to GerAA-mYpet/GerAB/GerAC foci.

Representative fluorescence images of vegetative cells expressing 5AF-mYpet or GerAA-mYpet in the presence of FigP or GerAB and GerAC, respectively. The mYpet fusions were expressed under the control of a xylose-regulated promoter (PxyIA) at the indicated concentrations. FigP, GerAB, and GerAC-His were expressed under the control of the IPTG-regulated promoter Phyperspank with 1 mM IPTG. All images were generated with the identical exposure time and are scaled identically, except those induced with 3.3 mM xylose, which were adjusted to detect the specific signal. Scale bar, 5 μ m.

Figure S15 Gao et al.

P(xyl)-5AF-gfp P(IPTG)-figP (1mM IPTG)

P(xyl)-5AF-gfp (1mM IPTG)

Figure S15. 5AF-GFP fluorescent foci require expression of FigP. Representative fluorescence images of vegetative cells expressing 5AF-GFP in the presence and absence of FigP. The 5AF-GFP fusion was expressed under the control of a xyloseregulated promoter (PxyIA) at the indicated concentrations. FigP was expressed under the control of the IPTG-regulated promoter Phyperspank with 1 mM IPTG. Scale bar, 5 µm. Each image was adjusted for the best visualization of 5AF-GFP.

Figure S16. GerAA(V371L) is strongly dominant-negative. (A) Representative immunoblot monitoring the levels of 5AF variants in lysates from purified spores. For clarity, "5AF(WT)" was used throughout this figure to indicate that *5AF* is intact at its native locus. The levels of the 5AF-ProC variants were similar in spores harboring 5AF(V371L) at an ectopic locus in the absence of the native *5AF* gene and in spores with an intact *5AF* gene at its native locus ["5AF(WT)"]. **(B)** Bar graph showing total DPA in purified spores from the indicated strains are similar. **(C,D)** Purified spores from the indicated strains were mixed with 1 mM L-alanine and DPA release **(C)** and optical density **(D)** were monitored over time. Spores with equivalent levels of 5AF(WT) and the channel-narrowing mutant 5AF(V371L) were delayed in germination to an extent similar to $\Delta 5AF$ and 5AF(V371L). These data support a model in which 5AF oligomerizes and the channel narrowing protomers can poison wild-type protomers.

Figure S17 Gao et al.

Figure S17. 5AF enhances ion release by non-native DPA transport complexes. (A) Purified spores from the indicated strains were mixed with 10 mM each of Asparagine, Glucose, Fructose, and K⁺ (AGFK) and DPA release was monitored over time. Spores that contain 5AF release DPA faster than those that lack it. (B) Bar graph showing total DPA in purified spores from the indicated strains are similar.

Figure S18 Gao et al.

Figure S18. FigP is conserved among *Bacilli*. Occurrence of FigP across the bacterial phylogenetic tree. Red lines indicate the presence of a FigP homolog in the indicated species. Homologs of SpolVB, SpoVV, and all the proteins encoded in the *spo5A* operon, with the exception of 5AF, are shown for comparison. 5AF was not included in this analysis because A subunits of GerA-family receptors are too similar to 5AF to distinguish between them. The NCBI nr database was searched using the *B. subtilis* FigP amino acid sequence or the other indicated proteins as the query. The BLASTp search program was used with an E-value cutoff of 0.001. The homologs were then plotted on a modified Newick tree built from Reference Prokaryotic Representative Genomes library available at NCBI (<u>ftp.ncbi.nlm.nih.gov/blast/db</u>). The tree was modified by removing duplicate species to generate unique taxID and scientific names for all organisms in the database. The phylogenetic tree was visualized in iTOL (<u>http://phylot.biobyte.de</u>).

Figure S19 Gao et al.

Figure S19. 5AF enhances ion release in the absence of germinosomes. (A) Purified spores from the indicated strains were mixed with 1 mM L-alanine and DPA release was monitored over time. Spores lacking 5AF or GerD were delayed in release of DPA. The double mutant was even more impaired, arguing that 5AF can act outside the germinosome. (B) Bar graph showing total DPA in purified spores from the indicated strains are similar.

Figure S20. The AlphaFold-predicted structure of FigP resembles INSIG homologs. (A) Structural alignment by TMalign of the AlphaFold-predicted structure of FigP (purple) with the experimentally determined structure of the INSIG homolog from *Mycobacterium vanbaalenii* (MvINS) (PDB:4XU4). Transmembrane helices 3 and 4 of MvINS that are not present in FigP are shown in grey; the rest of the MvINS protein is in cyan. FigP is in purple. The TMalign score for the four TM segments of FigP and MvINS was 0.6 with an RMSD of 3.65 Å. (B) Structure of MvINS bound to diacylglycerol (DAG) in red (PDB:4XU5). (C) Predicted structure of FigP with conserved tyrosines (pink) that line the membrane pocket. (D) Purified spores from the indicated strains were mixed with 1 mM L-alanine and DPA release was monitored over time. Substitutions of Y146 or Y149 to alanine cause a partial delay in DPA release. (E) Immunoblot showing the levels of FigP-His and 5AF-ProC in dormant spores from the indicated strains. Spo5AD controls for loading. Spores lacking *figP* have undetectable levels of 5AF-ProC. FigP(Y146A) is stable in spores, while FigP(Y149A) levels are partially reduced. The FigP double mutant (Y146A, Y149A) was unstable and was not included in this analysis.

Supplemental Table S1. Strains used in this study.

Strains	Genotype	Source	Figures
bAM860	ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72	[1]	S2
bDR2414	Bacillus subtilis 168 (trpC2) "wild-type"	[2]	1, 2, 3, S2, S3, S4, S8, S9, S10, S16, S19, S20
bDR4332	ΔgerD::lox72	This work	S19
bLA219	ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerA- gerAA(tet)	[1]	5
bYG08	ΔspoVAEa::lox72	[3]	S2
bYG09	ΔspoVAF::lox72	[3]	1, 2, 3, S2, S3, S4, S6, S8, S9, S10, S16, S19
bYG1025	∆spoVA::tet ycgO::PsspB-spoVA(Cd)(kan) yhdG::P _{VA} -spoVAF(spec)	This work	5
bYG1066	ΔgerA::cat ΔspoVA::tet ycgO::PsspB-spoVA2(Bc)(kan) yhdG::P _{VA} - spoVAF(spec)	This work	S17
bYG1144	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Phy-yqhR-His8(spec) yhdG::Pxyl- spoVAF-proC(phleo)	This work	3
bYG1177	ΔspoVAF::lox72 ΔgerD::lox72	This work	S19
bYG1179	ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 yvbJ::Phy-gerAC-His6(cat) ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAA- mYpet(phleo)	This work	4, S14
bYG1184	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Phy-yqhR-His6(spec) yhdG::Pxyl- spoVAF-proC(phleo) lacA::Pxyl-spoVAF-FLAG(erm)	This work	4
bYG1201	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Phy-yqhR-His8(spec) yhdG::Pxyl- spoVAF(phleo)	This work	3
bYG1217	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF(V371L)(spec)	This work	2, S8, S16
bYG1221	ΔspoVAF::lox72 yhdG::P _{vA} -spoVAF(Q375L)(spec)	This work	2, S8
bYG1243	ΔspoVAF::lox72 ΔyqhR::lox72 yvbJ::yqhR-His8(kan)	This work	2
bYG1246	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::P _{vA} -spoVAF(V371L)-gfp(spec)	This work	2
bYG1247	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::PvA-spoVAF(Q375L)-gfp(spec)	This work	2
bYG1252	ΔspoVAF::lox72 ΔyqhR::lox72 yvbJ::yqhR-His8(Kan) yhdG::PvA-spoVAF(V371L)-proC(spec)	This work	2
bYG1253	ΔspoVAF::lox72 ΔyqhR::lox72 yvbJ::yqhR-His8(Kan) yhdG::P _{VA} -spoVAF(Q375L)-proC(spec)	This work	2
bYG1255	ΔspoVAF::lox72 ΔyqhR::lox72 yvbJ::yqhR-His8(kan) yhdG::PvA-spoVAF-proC(spec)	This work	2, S20
bYG1265	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Phy-yqhR-His6(spec) yhdG::Pxyl- spoVAF(phleo) lacA::Pxyl-spoVAF-FLAG(erm)	This work	4
bYG1280	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::Pxyl-spoVAF-proC(phleo) lacA::Pxyl-spoVAF-FLAG(erm)	This work	4
bYG1298	yhdG::P _{VA} -spoVAF(V371L)(spec)	This work	S16
bYG1309	ΔyqhR::lox72 yvbJ::yqhR(Y146A)(kan)	This work	S20
bYG1316	ΔyqhR::lox72 yvbJ::yqhR(Y149A)(kan)	This work	S20
bYG1324	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::P _{VA} -spoVAF-proC(spec)	This work	S20
bYG1334	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::P _{VA} -spoVAF-proC(spec) yvbJ::vahR(Y146A)-His8(kan)	This work	S20
bYG1335	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::P _{VA} -spoVAF-proC(spec)	This work	S20
bYG147	ΔspoVA::tet ycgO::PsspB-spoVA2(Bc)(kan)	[1]	5

bYG1613	spoVAF-proC(phleo)	This work	S16
bYG1630	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF-ProC(spec)	This work	S4
bYG1664	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Phy-yqhR(spec) yhdG::Pxyl- spoVAF-mYpet(phleo)	This work	4, S14, S15
bYG1665	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::Pxyl-spoVAF-mYpet(phleo)	This work	4, S15
bYG1667	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Pveg-yqhR-His8(spec) yhdG::Phy- spoVAF-proC(erm)	This work	4
bYG1683	ΔspoVAF::lox72 yhdG::P _{vA} -spoVAF(V371L)-proC(spec)	This work	S16
bYG1715	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::Phy-spoVAF-proC(erm)	This work	4
bYG1716	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF-FLAG(spec)	This work	S4
bYG220	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::P _{vA} -spoVAF-His8(spec)	This work	3
bYG25	ΔspoVAF::lox72 yhdG::erm	This work	S5
bYG277	ΔspoVA::tet ycgO::PsspB-spoVA(Cd)(kan)	[1]	5
bYG331	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF-gfp(spec)	This work	S4, S6
bYG358	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::PvA-spoVAF-gfp(spec)	This work	1, 2
bYG382	ΔspoVAF::erm ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 yhdG::PvA-spoVAF-gfp(spec)	This work	S6
bYG383	ΔgerAB::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 yhdG::PsspB-gerUA-gerUC-gerUB-gerVB(Bm) (spec)	[1]	5
bYG390	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::PvA-spoVAF-gfp(spec) yvbJ::PgerA- gerAA-mScarlet(kan)	This work	1
bYG403	ΔgerD::erm ΔsleB::lox72 ΔspoVAF::lox72 yhdG::PvA-spoVAF-gfp(spec)	This work	1
bYG417	ΔspoVA::tet ycgO::PsspB-spoVA2(Bc)(kan) yhdG::P _{VA} -spoVAF(spec)	This work	5
bYG43	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF(spec)	This work	1, 2, S3, S4, S8
bYG438	ΔspoVAF::erm ΔgerAB::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 yhdG::PsspB-gerUA-gerUC-gerUB-	This work	5
	gerVB(Bm)(spec)		
bYG498	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF(A360V)(spec)	This work	S5
bYG502	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF(L367S)(spec)	This work	S5
bYG507	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF(A360V)(spec)	This work	2, S5, S6
bYG511	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF(L367S)(spec)	This work	2, S5, S6
bYG516	ΔsleB::lox72 ΔspoVAF::lox72 yhdG::erm	This work	S5
bYG519	ΔspoVAF::erm ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72	This work	S2, S6
bYG530	ΔspoVAF::erm ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 yhdG::P _{VA} -spoVAF(A360V)	This work	S6
bYG540	ΔspoVAF::erm ΔgerA::lox72 ΔgerBB::lox72 ΔgerKB::lox72 ΔyfkT::lox72 ΔyndE::lox72 yhdG::P _{VA} -spoVAF(L367S)(spec)	This work	S6
bYG57	ΔspoVAF::lox72 yhdG::P _{VA} -spoVAF-His8(spec)	This work	S4
bYG584	ΔspoVAF::lox72 ycgO::P _{VA} -spoVAF(A360V)(cat)	This work	3, S9
bYG611	ΔgerA::cat ΔspoVA::tet ycgO::PsspB-spoVA(Cd)(kan) yhdG::PvA-spoVAF(spec)	This work	S17
bYG701	ΔyktB::lox72	This work	S9, S10
bYG702	ΔymfJ::lox72	This work	S9, S10
bYG703	ΔytpA::lox72	This work	S9, S10
bYG704	ΔymfD::lox72	This work	S9, S10
bYG705	ΔyqhR::lox72	This work	3, S9, S20
bYG706	ΔyqhR ΔspoVAF::lox72 ycgO::P _{VA} -spoVAF(A360V)(cat)	This work	3
bYG711	ΔspoVAF::lox72 ΔymfD::lox72	This work	S10
bYG712	ΔspoVAF::lox72 ΔymfJ::lox72	This work	S10
bYG713	ΔspoVAF::lox72 ΔyktB::lox72	This work	S10

bYG714	ΔspoVAF::lox72 ΔytpA::lox72	This work	S10
bYG715	ΔspoVAF::lox72 ΔyqhR::lox72	This work	3
bYG725	ΔyqhR::lox72 ΔspoVAF::lox72 ycgO::Pva-spoVAF(A360V)(cat)	This work	S9
bYG726	ΔytpA::lox72 ΔspoVAF::lox72 ycgO::P _{VA} -spoVAF(A360V)(cat)	This work	S9
bYG727	ΔyktB::lox72 ΔspoVAF::lox72 ycgO::P _{VA} -spoVAF(A360V)(cat)	This work	S9
bYG728	ΔymfJ::lox72 ΔspoVAF::lox72 ycgO::P _{VA} -spoVAF(A360V)(cat)	This work	S9
bYG729	ΔymfD::lox72 ΔspoVAF::lox72 ycgO::PVA-spoVAF(A360V)(cat)	This work	S9
bYG783	ΔgerA::cat ΔspoVA::tet ycgO::PsspB-spoVA2(Bc)(kan)	This work	S17
bYG785	ΔsleB::lox72 ΔyqhR::lox72 yvbJ::yqhR-His8(kan)	This work	3
bYG788	ΔsleB::lox72 ΔspoVAF::lox72 ΔyqhR::lox72 yvbJ::yqhR-His8(kan)	This work	3
bYG793	ΔgerA::cat	This work	2, S8
bYG795	ΔsleB::lox72 ΔspoVAF::lox72 ΔyqhR::erm yhdG::P _{VA} -spoVAF-His8(spec)	This work	3
bYG797	ΔgerA::cat ΔspoVA::tet ycgO::PsspB-spoVA(Cd)(kan)	This work	S17
bYG802	ΔsleB::lox72 ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::P _{VA} -spoVAF-gfp(spec) yvbJ::yqhR-mScarlet(kan)	This work	3
bYG879	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Pveg-yqhR(spec) yhdG::Phy- spoVAF(erm)	This work	4, S13
bYG881	ΔspoVAF::lox72 ΔyqhR::lox72 ycgO::Pveg-yqhR(spec) yhdG::Phy- spoVAF(L367S)(erm)	This work	4, S13
bYG882	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::Phy-spoVAF(erm)	This work	4
bYG884	ΔspoVAF::lox72 ΔyqhR::lox72 yhdG::Phy-spoVAF(L367S)(erm)	This work	4, S13

Plasmid	Genotype	Source
pCOLADuet-1	Expression vector with two T7 promoters; COLA replicon, (kan)	Novagen
pFR38	Himar1 C9 transposase, ITR2-spec-ITR1(Mmel site in ITR1) (erm)	laboratory stock
pLA73	MCS-proC His-SUMO-FLAG-MCS (amp)	[4]
pCB179	yhdG::P _{VA} (spec)(amp)	[3]
pDR244	cre (spec)(amp)	laboratory stock
pWX318	mYpet (cat) (amp)	laboratory stock
pCB47	yvbJ::kan (amp)	laboratory stock
pCB42	ycgO::cat (amp)	laboratory stock
pCB47	yvbJ::kan (amp)	laboratory stock
pLA155	ycgO::Pveg-gerAB (spec)(amp)	[1]
pCB100	yhdG::Phypespank(hy) (erm)(amp)	laboratory stock
pCB90	ycgO:: Phy (spec)(amp)	laboratory stock
pCB109	yhdG::PxylA (phleo)(amp)	laboratory stock
pDR183	lacA::erm (amp)	laboratory stock
pYG47	ycgO::P _{VA} -spoVAEb(cat)(amp)	[1]
pYG07	yhdG::P _{VA} -spoVAF (spec)(amp)	This study
pYG31	yhdG::P _{vA} -spoVAF-His8 (spec)(amp)	This study
pYG105	yhdG::P _{VA} -spoVAF-gfp (spec)(amp)	This study
pYG137	yvbJ::PgerA-gerAA-mScarlet (kan)(amp)	This study
pYG156	spoVAF (kan)	This study
pYG228	ycgO::P _{VA} -spoVAF (cat)(amp)	This study
pYG189	ycgO::P _{VA} -spoVAF(A360V) (cat)(amp)	This study
pYG235	yvbJ::yqhR-mScarlet (kan)(amp)	This study
pYG238	yvbJ::yqhR-His8 (kan)(amp)	This study
pYG269	ycgO::Pveg-yqhR (spec)(amp)	This study
pYG270	yhdG::Phy-spoVAF (erm)(amp)	This study
pYG272	yhdG::Phy-spoVAF(L367S) (erm)(amp)	This study
pYG293	ycgO::P _{VA} -spoVAF(L367S) (cat)(amp)	This study
pYG296	ycgO::Pveg-yqhR-His8 (spec)(amp)	This study
pYG297	spoVAF-proC (amp)	This study
pYG314	ycgO::Phy-yqhR (spec)(amp)	This study
pYG318	yhdG::Pxyl-spoVAF-proC (phleo)(amp)	This study
pYG319	ycgO::Phy-yqhR-His8 (spec)(amp)	This study
pYG341	yhdG::P _{VA} -spoVAF-proC (spec)(amp)	This study
pYG563	yhdG::P _{VA} -spoVAF-FLAG (spec)(amp)	This study
pYG351	lacA::Pxyl-spoVAF-FLAG (erm)(amp)	This study
pYG360	yhdG::Pxyl-spoVAF (phleo)(amp)	This study
pYG377	yhdG::P _{vA} -spoVAF(V371L) (spec)(amp)	This study
pYG378	yhdG::P _{vA} -spoVAF(Q375L) (spec)(amp)	This study
pYG386	yhdG::P _{VA} -spoVAF(V371L)-gfp (spec)(amp)	This study
pYG387	yhdG::P _{VA} -spoVAF(Q375L)-gfp (spec)(amp)	This study
pYG388	yhdG::P _{VA} -spoVAF(V371L)-proC (spec)(amp)	This study
pYG389	yhdG::P _{vA} -spoVAF(Q375L)-proC (spec)(amp)	This study
pYG415	yvbJ::PyqhR-yqhR (kan)(amp)	This study
pYG416	yvbJ::PyqhR-yqhR(Y146A) (kan)(amp)	This study
pYG417	yvbJ::PyqhR-yqhR(Y149A) (kan)(amp)	This study

Supplemental Table S2. Plasmids used in this study.

pYG432	yvbJ::PyqhR-yqhR(Y146A)-His8 (kan)(amp)	This study
pYG433	yvbJ::PyqhR-yqhR(Y149A)-His8 (kan)(amp)	This study
pYG540	yhdG::Pxyl-spoVAF-mYpet (phleo)(amp)	This study
pYG546	yhdG::Phy-spoVAF-proC (erm)(amp)	This study

Supplemental Table 3. Oligonucleotides used in this study.

oligos	sequence	use
oYG17	TGCCAGTCACGTTACGTTATTAG	sequence spoVAF
oYG380	CAGTGCAGGCTAGCTTTTTTG	sequence spoVAF
oCB63	gactggtttttgctcagacaa	amplify spoVAF mutants
oYG381	CCACTCTCAACTCCTGATCCAAACA	amplify spoVAF mutants
oYG1048	ATGTATTCACGAACGAAAATCGCCTACTTATCATCATCATCCTTATAGTCgga	pYG563
oYG109	GCGATTTTCGTTCGTGAATACATGT	pYG105, pYG341, pYG563
oYG110	ctggcggaagcggaggatccAAGGGAGAAGAGTTGTTTACGGGT	pYG105
oYG111	GTATTCACGAACGAAAATCGCTTaggtgctACTAGTAGAACCACCGCCT	pYG105
oYG190	CATCCATGgtatatctccttcttaaagttaaac	pYG297
oYG20	CACcatcatCACCACcatcatCACTAGGCGATTTTCGTTCGTGAATACATGT	pYG31
oYG27	tgatgGTGGTGatgatgGTGTGAATTGGTAGGCTGCCTTAAGCGA	pYG31
oYG282	ggatcctccgcttccgccagagcctccTGAATTGGTAGGCTGCCTTAAGCGA	pYG105, pYG297, pYG540
oYG292	GAATTCGACATCAAGAGCGGGAAGGGAGATTTG	pYG137, pYG235, pYG238, pYG415
oYG293	CTCGAGatGCTAGCatGGATCCcagc	pYG137, pYG235, pYG415
oYG35	cagcgACTAGTTTTATTTTAGAAAGGAGCGGGTATC	pYG07
oYG351	TCCCGCTCTTGATGTCGAATTCGTCCTGCCGTACTCCTTTGATGT	pYG137
oYG352	ggatcctccgcttccgccagagcctccAGTTTCAGTGGAGTCTGTTTTTG	pYG137
oYG353	ctggcggaagcggaggatccGTTTCGAAAGGTGAGGCAGTTATTAAG	pYG137, pYG235
oYG354	GATCCatGCTAGCatCTCGAGttaCTTGTACAGTTCATCCATGCCGCCGGT	pYG137, pYG235
oYG36	cacggCTCGAGTTATGAATTGGTAGGCTGCCTTAAG	pYG07
oYG392	atggctgctgcccatggtatatc	pYG156
oYG393	ctcgagtctggtaaagaaaccgct	pYG156
oYG394	ataccatgggcagcagccatTTTATTTTAGAAAGGAGCGGGTATCATG	pYG156
oYG395	ggtttctttaccagactcgagTACTCTTCAGTCAGTTTCAATGCGA	pYG156
oYG396	ACTAGTatAAGCTTtcggtggttatatatgtaGTATGTGGTTCGA	pYG189, pYG228, pYG293
oYG397	ccaccgaAAGCTTatACTAGTTTTATTTTAGAAAGGAGCGGGTATCATG	pYG189, pYG228, pYG293
oYG398	GATCCatGCTAGCatCTCGAGTACTCTTCAGTCAGTTTCAATGCGA	pYG189, pYG228, pYG293
oYG417	catatataaccaccgaAAGCTTatACTAGTTTTATTTTAGAAAGGAGCGGGTATCATG	spoVAF PCR mutagenesis
oYG418	CAGGGGGATCCatGCTAGCatCTCGAGTACTCTTCAGTCAGTTTCAATGCGA	spoVAF PCR mutagenesis
oYG437	CTCGAGatGCTAGCatGGATCCCATAC	pYG189, pYG228, pYG293
oYG534	CTACTTATCATCATCATCCTTATAGTCggatcctccgcttccgccagagc	pYG351
oYG551	TCCCGCTCTTGATGTCGAATTCATCCGTTCTTCTGATGGCTGTAAC	pYG235, pYG238, pYG415
oYG552	ggatcctccgcttccgccagagcctccTTCTCTATGCATTCCCAGCGCACGT	pYG235
oYG561	CACcatcatCACCACcatcatCACTAACTCGAGatGCTAGCatGGATCCcagc	pYG238
oYG562	TTAGTGatgatgGTGGTGatgatgGTGggatcctccgcttccgccagagc	pYG238, pYG296
oYG604	ttggattattcacctcttttggttACTAGTcact	pYG269, pYG296

oYG605	GGATCCTTCTGCTCCGCTCAG	pYG269
oYG606	ccaaaagaggtgaataatccaaATGATGACAAGCGAAAAAGATACAG	pYG269, pYG296
oYG607	GAGCGAGGGAGCAGAAGGATCCCTATTCTCTATGCATTCCCAGCGCACGT	pYG269
oYG608	GtAATTGTGAGCGGATAACAATTAAGCTTTTTATTTTAGAAAGGAGCGGGTATCATG	pYG270, pYG272, pYG546
oYG609	TGCgaGCTAGCatCTGCAGttACTAGTTTATGAATTGGTAGGCTGCCTTAAG	pYG270, pYG272
oYG618	GCgaGCTAGCatCTGCAGttATCACTTCCCATCAATGAGCCGCGGATCTACTTGGTC	pYG546
oYG637	CACcatcatCACCACcatcatCACTAAGGATCCTTCTGCTCCCTCGCTCAG	pYG296
oYG638	gtttaactttaagaaggagatataccatggATGCCGGACCACAAGGAAGAGAAAATTC	pYG297
oYG661	tctggcggaagcggaggatccACTAGTGAAGACCAAGTAGATCCGCGGCT	pYG297
oYG664	GtAATTGTGAGCGGATAACAATTAaaccaaaagaggtgaataatccaaATGA	pYG314, pYG319
oYG665	TGCgaGCTAGCatCTGCAGttACTATTCTCTATGCATTCCCAGCGCACGT	pYG314
oYG667	taacctgaagAATTgGATCCatCTCACTTCCCATCAATGAGCCGCGGATCTACTTGGTC	pYG318
oYG668	TTTATTTTAGAAAGGAGCGGGTATCATGCCGGACCACAAGGAAGAGAAAATTC	pYG318
oYG669	gaaataaaatgcatctgtatttgaatgATTTATTTTAGAAAGGAGCGGGTATCATG	pYG318, pYG360
oYG670	TGCgaGCTAGCatCTGCAGttATTAGTGatgatgGTGGTGatgatgGTGgga	pYG319
oYG703	ATGTATTCACGAACGAAAATCGCTCACTTCCCATCAATGAGCCGCGGATCTACTTGGTC	pYG341
oYG726	GAACGTCCCGGGGAGCTCatgCGTGCCATGTCACTATTGCTTCAGAAATAC	pYG351
oYG727	cctagcatgcatgctagcatcCTACTTATCATCATCATCCTTATAGTCgga	pYG351
oYG737	GGATCcAATTcttcaggttatgaccatctgtgccag	pYG540
oYG738	tctggcggaagcggaggatccTCAAAAGGCGAAGAGCTGTTTACCGGAG	pYG540
oYG739	gtcataacctgaagAATTgGATCCTTACTTGTAAAGTTCATTCATCCCTTCTGT	pYG540
oYG74	ttCCTCCTTAtgttcggtggttatatatgtaGTATGTGGTTCGA	pYG31, pYG341, pYG563
oYG740	taacctgaagAATTgGATCCatCTTATGAATTGGTAGGCTGCCTTAAGCGA	pYG360
oYG75	accaccgaacaTAAGGAGGaactactATGCCGGACCACAAGGAAGAGA	pYG31, pYG341, pYG563
oYG750	AGCAATGGGTTTAATTGCCGCTCTTCTGATCGGGCAGATTGCGA	pYG377, pYG386, pYG388
oYG751	TCGCAATCTGCCCGATCAGAAGAGCGGCAATTAAACCCATTGCT	pYG377, pYG386, pYG388
oYG752	TGCCGCTGTTCTGATCGGGCTGATTGCGATTGAGGTCGGCCT	pYG378, pYG387, pYG389
oYG753	AGGCCGACCTCAATCGCAATCAGCCCGATCAGAACAGCGGCA	pYG378, pYG387, pYG389
oYG799	tgGGATCCatGCTAGCatCTCGAGCTATTCTCTATGCATTCCCAGCGCACGT	pYG415
oYG800	CAATTATTACGACCATTTGCATTGCTTTGCTTTACGGGCTGTTTGTC	pYG416, pYG432
oYG801	GACAAACAGCCCGTAAAGCAAAGCAATGCAAATGGTCGTAATAATTG	pYG416, pYG432
oYG802	ACCATTTGCATTTATTTGCTTGCCGGGCTGTTTGTCGGGTATTC	pYG417, pYG433
oYG803	GAATACCCGACAAACAGCCCGGCAAGCAAATAAATGCAAATGGT	pYG417, pYG433

Supplemental Methods

Plasmid constructions

pYG07[*yhdG::PvA-spoVAF(spec)(amp)*] was constructed in a 2-way ligation with a PCR product containing the *spoVAF* gene amplified with oYG35 and oYG36 using gDNA of *B. subtilis 168*, and the plasmid pCB179 cut with Spel and Xhol. pCB179 is a double crossover integration vector at the *yhdG* locus with a *spec* cassette and the promoter of *spoVA* operon (P_{VA}).

pYG31[*yhdG::P_{VA}-spoVAF-His8(spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF-His8* amplified with primers oYG75 and oYG27 using gDNA of *B. subtilis 168*, and the plasmid pCB179 amplified with primers oYG20 and oYG74. pCB179 is a double crossover integration vector at *yhdG* locus with a *spec* cassette and the promoter of *spoVA* operon (P_{VA}).

pYG105[*yhdG::P_{VA}-spoVAF-gfp(spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *gfp* amplified with primers oYG110 and oYG111 using plasmid pHCL132 (laboratory stock), and plasmid pYG31 amplified with oYG109 and oYG282.

pYG137[*yvbJ::PgerA-gerAA-mScarlet(kan)(amp)*] was constructed in a 3-way isothermal assembly reaction with 2 PCR products and pCB47 amplified with oYG292 and oYG293. One PCR product containing *PgerA-gerAA* was amplified with oYG351 and oYG352 using gDNA of *B. subtilis 168*, and another PCR product containing mScarlet was derived from pCB142 (laboratory stock) with primers oYG353 and oYG354. pCB47 is a double crossover integration vector at *yvbJ* locus with a *kan* cassette.

pYG156[*spoVAF*(*kan*)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF* amplified with oYG394 and oYG395 using gDNA of *B. subtilis 168*, and plasmid pCOLADuet-1(Novagen) amplified with oYG393 and oYG394. pYG156 was used as a template for PCR mutagenesis of *spoVAF*.

pYG189[*ycgO::P_{VA}-spoVAF*(*A360V*)(*cat*)(*amp*)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF*(*A360V*) amplified with oYG397 and oYG398 using gDNA of bYG498, and the plasmid pYG47 [3] amplified with oYG396 and oYG437.

pYG293[*ycgO::P_{VA}-spoVAF(L367S)(cat)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF(L367S)* amplified with oYG397 and oYG398 using gDNA of bYG502, and the plasmid pYG47 [3] amplified with oYG396 and oYG437.

pYG228[*ycgO::P_{VA}-spoVAF(cat)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF* amplified with oYG397 and oYG398 using gDNA of *B. subtilis 168*, and the plasmid pYG47 [3] amplified with oYG396 and oYG437.

pYG235[*yvbJ::yqhR-mScarlett(kan)(amp)***]** was constructed in a 3-way isothermal assembly reaction with 2 PCR products and pCB47 amplified with oYG292 and oYG293. One PCR product contained the *yqhR* gene with its native promoter amplified with primers oYG551 and oYG552 using gDNA of *B. subtilis 168,* the second PCR product contained *mScarlet* derived from pCB142 (laboratory stock) with primers oYG353 and oYG354. pCB47 is a double crossover integration vector at *yvbJ* locus with a *kan* cassette.

pYG238[*yvbJ::yqhR-His8(kan)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product contained the *yqhR* gene with its native promoter amplified with oYG551 and oYG562 using pYG235 as template, and plasmid pCB47 amplified with oYG561 and oYG292. pCB47 is a double crossover integration vector at *yvbJ* locus with a *kan* cassette.

pYG269[*ycgO::Pveg-yqhR(spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing the *yqhR* amplified with oYG606 and oYG607 using gDNA of *B. subtilis 168,* and plasmid pLA155 [1] amplified with oYG604 and oYG605.

pYG296[*ycgO::Pveg-yqhR-His8*(*spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing the gene *yqhR* amplified with oYG606 and oYG562 using pYG235 as template, and plasmid pLA155 [1] amplified with oYG604 and oYG637.

pYG270[*yhdG::Phy-spoVAF(erm)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF* amplified with oYG608 and oYG609 using gDNA of *B. subtilis 168,* and the plasmid pCB100 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the *yhdG* locus with an *erm* cassette and the IPTG-inducible promoter Phyperspank (laboratory stock).

pYG272[*yhdG::Phy-spoVAF(L367S)(erm)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF(L367S)* amplified with primers oYG608 and oYG609 using gDNA of bYG502, and the plasmid pCB100 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the *yhdG* locus with an *erm* cassette and the IPTG-inducible promoter Phyperspank (laboratory stock).

pYG314[*ycgO::Phy-yqhR(spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *yqhR* amplified with oYG664 and oYG665 using pYG269, and plasmid cut with pCB90 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the *yhdG* locus with an *erm* cassette and the IPTG-inducible promoter Phyperspank (laboratory stock).

pYG297[*spoVAF-proC (amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF* with primers oYG638 and oYG282 using gDNA of *B. subtilis 168*, and plasmid pLA73 amplified with oYG661 and oYG190. pLA73 is a plasmid used for protein expression in *E. coli* carrying the ProteinC (ProC) and FLAG epitope tags.

pYG318[*yhdG::PxylA-spoVAF-proC(phleo)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF-proC* and plasmid pCB109 cut with HindIII and XhoI. The PCR product was first amplified with primers oYG667 and oYG668 using plasmid pYG297 as template, and subsequently, amplified with oYG667 and oYG669 using the initial PCR product as a template. pCB109 is a double crossover integration vector at the *yhdG* locus with a *phleo* cassette and a xylose-inducible promoter PxylA (laboratory stock).

pYG319[*ycgO::Phy-yqhR-His8*(*spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *yqhR-His8* amplified with primers oYG664 and oYG670 using pYG296 as template, and plasmid pCB90 cut with HindIII and SpeI. pCB90 is a double crossover integration vector at *ycgO* locus with a *spec* cassette and the IPTG-inducible promoter Phyperspank (laboratory stock).

pYG341[*yhdG::Pva-spoVAF-proC(spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF-proC* amplified with oYG75 and oYG703 using pYG318

as template, and plasmid pCB179 amplified with oYG74 and oYG109. pCB179 is a double crossover integration vector at *yhdG* locus with a *spec* cassette and the promoter of the *spoVA* operon (P_{VA}).

pYG351[*lacA::PxylA-spoVAF-FLAG(erm)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing the *spoVAF-FLAG* and plasmid pdr183 cut with EcoRI and XhoI. The PCR product was first amplified with oYG534 and oYG726 using pYG318 as template, and subsequently amplified with oYG726 and oYG727 using the initial PCR product as template. pDR183 is a double crossover integration vector at the *lacA* locus with an *erm* cassette (laboratory stock).

pYG360[*yhdG::PxylA-spoVAF(phleo)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF* amplified with oYG669 and oYG740 using gDNA of *B. subtilis 168,* and plasmid pCB109 cut with HindIII and XhoI. pCB109 is a double crossover integration vector at the *yhdG* locus with a *phleo* cassette and a xylose-inducible promoter *PxylA* (laboratory stock).

pYG377[*yhdG::Pva-spoVAF(V371L)(spec)(amp)*] was constructed by site-directed mutagenesis using primers oYG750 and oYG751, and pYG07 as template.

pYG378[*yhdG::Pva-spoVAF(Q375L)(spec)(amp)*] was constructed by site-directed mutagenesis using primers oYG752 and oYG753, and pYG07 as template.

pYG386[*yhdG::P_{VA}-spoVAF(V371L)-gfp(spec)(amp)*] was constructed by site-directed mutagenesis using primers oYG750 and oYG751, and pYG105 as template.

pYG387[*yhdG::Pva-spoVAF(Q375L)-gfp(spec)(amp)*] was constructed by site-directed mutagenesis using primers oYG752 and oYG753, and pYG105 as template.

pYG388[*yhdG::P_{VA}-spoVAF(V371L)-proC(spec)(amp)*] was constructed by site-directed mutagenesis using primers oYG750 and oYG751, and pYG341 as template.

pYG389[*yhdG::P_{VA}-spoVAF(Q375L)-proC(spec)(amp)*] was constructed by site-directed mutagenesis using primers oYG752 and oYG753, and pYG341 as template.

pYG415[*yvbJ::yqhR(kan)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR containing yqhR and its native promoter amplified with oYG551 and oYG799 using gDNA of *B. subtilis 168,* and plasmid pCB47 amplified with oYG292 and oYG293. pCB47 is a double crossover integration vector at *yvbJ* locus with a *kan* cassette.

pYG416[*yvbJ::yqhR*(*Y146A*)(*kan*)(*amp*)] was constructed by site-directed mutagenesis using primers oYG800 and oYG801, and pYG415 as template.

pYG417[*yvbJ::yqhR*(*Y149A*)(*kan*)(*amp*)] was constructed by site-directed mutagenesis using primers oYG802 and oYG803, and pYG415 as template.

pYG432[*yvbJ::yqhR*(*Y146A*)-*His8*(*kan*)(*amp*)] was constructed by site-directed mutagenesis using primers oYG800 and oYG801, and pYG238 as template.

pYG433[*yvbJ::yqhR*(*Y149A*)-*His8*(*kan*)(*amp*)] was constructed by site-directed mutagenesis using primers oYG802 and oYG803, and pYG238 as template.

pYG540[*yhdG::PxylA-spoVAF-mYpet(phleo)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *mYpet* amplified with oYG738 and oYG739 using plasmid pWX318 (laboratory stock), and plasmid pYG360 amplified with oYG737 and oYG282.

pYG546[*yhdG::Phy-spoVAF-proC(erm)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product containing *spoVAF-proC* amplified with oYG608 and oYG618 using pYG318, and pCB100 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the *yhdG* locus with an *erm* cassette and IPTG-inducible promoter Phyperspank (laboratory stock).

pYG563[*yhdG::P_{VA}-spoVAF-FLAG(spec)(amp)*] was constructed in a 2-way isothermal assembly reaction with a PCR product amplified with oYG75 and oYG1048 using pYG351, and pCB179 amplified with oYG74 and oYG109. pCB179 is a double crossover integration vector at *yhdG* locus with a *spec* cassette and the promoter of *spoVA* operon (P_{VA}).

All plasmids were confirmed by Sanger sequencing.

SUPPLEMENTAL REFERENCES

- 1. Gao Y, Amon JD, Artzi L, Ramirez-Guadiana FH, Brock KP, Cofsky JC, et al. Bacterial spore germination receptors are nutrient-gated ion channels. Science. 2023;380(6643):387-91. Epub 20230427. doi: 10.1126/science.adg9829. PubMed PMID: 37104613.
- Zeigler DR, Pragai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, et al. The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol. 2008;190(21):6983-95. Epub 20080822. doi: 10.1128/JB.00722-08. PubMed PMID: 18723616; PubMed Central PMCID: PMCPMC2580678.
- Gao Y, Barajas-Ornelas RDC, Amon JD, Ramirez-Guadiana FH, Alon A, Brock KP, et al. The SpoVA membrane complex is required for dipicolinic acid import during sporulation and export during germination. Genes Dev. 2022;36(9-10):634-46. Epub 20220602. doi: 10.1101/gad.349488.122. PubMed PMID: 35654455; PubMed Central PMCID: PMCPMC9186386.
- Taguchi A, Welsh MA, Marmont LS, Lee W, Sjodt M, Kruse AC, et al. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat Microbiol. 2019;4(4):587-94. Epub 20190128. doi: 10.1038/s41564-018-0345-x. PubMed PMID: 30692671; PubMed Central PMCID: PMCPMC6430707.