Science
 | ${ }_{\text {AAAS }}$

Supplementary Materials for

Bacterial spore germination receptors are nutrient-gated ion channels

Yongqiang Gao et al.
Corresponding author: David Z. Rudner, rudner@hms.harvard.edu
Science 380, 387 (2023)
DOI: 10.1126/science.adg9829
The PDF file includes:
Materials and Methods
Figs. S1 to S26
Tables S1 to S3
References

Other Supplementary Material for this manuscript includes the following:

Data S1 to S5

MDAR Reproducibility Checklist

Materials and Methods

General methods

All strains were derived from Bacillus subtilis 168 (39) or Bacillus cereus ATCC 10876 (27). Sporulation was induced by nutrient exhaustion in complete Difco Sporulation Medium (DSM) (Fisher Scientific, cat\#BD234000) (40) at $37^{\circ} \mathrm{C}$ for 30 h . Sporulation efficiency was determined by comparing the heat-resistant ($80^{\circ} \mathrm{C}$ for 20 min) colony forming units (CFUs) of mutants to wildtype. All in-frame deletion mutants were derived from the Bacillus knock-out collection (BKE) (41), or generated by direct transformation of isothermal assembly products into B. subtilis 168 . The antibiotic cassettes in the deletion mutants were excised using a temperature-sensitive plasmid that constitutively expresses Cre recombinase (42). All non-deletion mutants were generated by direct transformation of linearized plasmids or genomic DNA. Site-directed mutants were generated using a modified QuickChange protocol. All strains, plasmids and primers used in this study can be found in Supplemental Tables S1, S2, and S3. The strains used in each figure are indicated in Table S1. Strain and plasmid constructions are described in Supplemental Methods. All experiments presented in the text figures were from one of three biological replicates. All experiments presented in the supplemental figures were from one of at least two biological replicates.

Spore purification

To generate spores for germination assays and immunoblot analyses, cells were grown in liquid DSM at $37{ }^{\circ} \mathrm{C}$ to an OD_{600} of $0.2-0.3$, and then spread on DSM agar plates and incubated for 96 h at $37{ }^{\circ} \mathrm{C}$. Spores from each agar plate were scraped, washed 3 times with $\mathrm{ddH}_{2} \mathrm{O}$ and then resuspended in $350 \mu \mathrm{~L} 20 \%$ histodenz (Sigma-Aldrich, cat\#D2158). The suspension was layered on top of $1 \mathrm{~mL} 50 \%$ histodenz in a microfuge tube and the step-gradient was centrifuged at 16,000 $\mathrm{x} g$ for 30 min at room temperature. The pellet containing mature, phase-bright spores was collected and washed 4 times with $\mathrm{ddH}_{2} \mathrm{O}$. The purified spores were used on the same day in germination assays. If spores were only used for immunoblot analyses or to determine total DPA content, they were scraped from DSM agar plates and resuspended in PBS with $1.5 \mathrm{mg} / \mathrm{mL}$ lysozyme, and incubated at $37{ }^{\circ} \mathrm{C}$ for 1 h . SDS was then added to a final concentration of $2 \%(\mathrm{w} / \mathrm{v})$, incubated for 30 min followed by 5 washes with $\mathrm{ddH}_{2} \mathrm{O}$.

DPA quantification

Purified spores were normalized to an OD_{600} of 1 in $1 \mathrm{~mL} \mathrm{ddH} \mathrm{H}_{2} \mathrm{O}$, and the spore suspension was incubated at $100{ }^{\circ} \mathrm{C}$ for 30 m to release DPA. After $16,000 \mathrm{xg}$ centrifugation for $5 \mathrm{~min}, 300 \mu \mathrm{~L}$ of the supernatant was collected and mixed with $300 \mu \mathrm{~L} 100 \mu \mathrm{M} \mathrm{TbCl}_{3} .150 \mu \mathrm{~L}$ of the mixture was transferred to a black, flat-bottom, 96 -well plate and the fluorescence signal was measured at 545 nm with excitation at 272 nm using an Infinite M Plex plate reader (Tecan). Each sample was analyzed in technical triplicate and compared to a standard curve generated using purified DPA (Sigma-Aldrich, cat\#P63808).

DPA release assay

Histodenz-purified phase-bright spores were normalized to OD_{600} of 1 in 25 mM HEPES pH 7.4 , and heat-activated at $70{ }^{\circ} \mathrm{C}$ for 30 min , followed by incubation on ice for $15 \mathrm{~m} .75 \mu \mathrm{~L}$ of the spore suspension was transferred to a black, flat-bottom, 96 -well plate and an equal volume of 25 mM HEPES pH 7.4 (buffer), 2 or 20 mM L-alanine, 20 mM AGFK (20 mM of L-asparagine, D-glucose, fructose, and KCl), 20 mM GLPK (20 mM of D-glucose, L-leucine, L-proline and KBr) resuspended
in 25 mM HEPES pH 7.4 was added to the spores. All nutrients and buffer contained $100 \mu \mathrm{M} \mathrm{TbCl} 3$ resulting in a final concentration of $50 \mu \mathrm{M}$. The fluorescence was monitored at 545 nm with excitation at 272 nm every 2 min for 2 h in an Infinite M Plex plate reader (Tecan). The 96 -well plate was maintained at $30{ }^{\circ} \mathrm{C}$ and agitated between measurements. All spore samples and conditions were tested in technical triplicate and compared to a standard curve.

Reduction in optical density (OD_{600}) assay

Histodenz-purified phase-bright spores were normalized to OD_{600} of 1.2 in 25 mM HEPES pH 7.4 , and heat-activated at $70^{\circ} \mathrm{C}$ for 30 min , followed by incubation on ice for $15 \mathrm{~min} .100 \mu \mathrm{~L}$ of spore suspension was then transferred to a clear, flat-bottom, 96 -well plate. An equal volume of nutrients or buffer as described above was added to the spore suspension for a final OD_{600} of 0.6 . The OD_{600} was monitored every 2 min for 4 h using an Infinite M Plex plate reader (Tecan). The plate was maintained at $37{ }^{\circ} \mathrm{C}$ with agitation between measurements. All samples were analyzed in technical triplicate.

Cation release assay using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Histodenz-purified phase-bright spores were normalized to OD_{600} of 5 in 20 mL ddH 2 O , heatactivated at $70{ }^{\circ} \mathrm{C}$ for 30 min followed by incubation on ice for 15 min .1 mL of the spore suspension was mixed with $1 \mathrm{~mL} \mathrm{ddH} \mathrm{H}_{2} \mathrm{O}$ and boiled for 30 m to release all DPA and ions from the spore core. The supernatant was collected and stored on ice. The remaining 19 mL spore suspension was prewarmed at $37{ }^{\circ} \mathrm{C}$ for 20 min , followed by the addition of an equal volume of 20 mM L -alanine. The mixture was vortexed and incubated at $37{ }^{\circ} \mathrm{C}$. At the indicated time points, 2 mL of the spore suspension were collected and the germination exudate (the supernatant) was collected by centrifugation (at $16,000 \mathrm{xg}$ for 30 s). 1.8 mL of the supernatant was transferred to a fresh microfuge tube avoiding the spore pellet and was stored on ice until all samples were collected. In all cases, the spore suspension was collected 20 s prior to the indicated time point.

Upon completion of the time course, the germination exudates were separately passed through 0.2 $\mu \mathrm{m}$ syringe filters to remove all particulates. $150 \mu \mathrm{~L}$ of the filtrate was used for DPA quantification by mixing with equal volume of $100 \mu \mathrm{MbCl}_{3}$ and analyzed as described above. The remaining 1.6 mL of filtered germination exudate was mixed with $400 \mu \mathrm{~L} 10 \%$ nitric acid. The concentrations of $\mathrm{K}^{+}, \mathrm{Mg}^{2+}$ and Ca^{2+} in these samples were quantified using an Agilent 7900 Inductively Coupled Plasma Mass Spectrometer in the Center for Environmental Health Sciences Bioanalytical Core Facility at MIT. The instrument was operated in helium mode. All samples were analyzed in biological triplicate. A standard curve for each cation was generated prior to analyzing the germination exudates for each ICP-MS experiment using ultrapure stocks of $\mathrm{KCl}, \mathrm{MgCl}_{2}, \mathrm{CaCl}_{2}$ (Avantor, cat\#BDH82026-000, cat\#BDH82026-008, cat\#BDH82025-960). The concentration of ions present prior to L-alanine addition was subtracted from the concentrations at all time points after addition. The data were plotted as a percent ion released based on the concentration released at 60 min after L-alanine addition.

gerAA library construction

The gerAA gene in pLA29 was PCR-amplified using oJA178 and oJA179 and an error-prone Pfu polymerase containing the D473G mutation. The mutagenized PCR product was then restriction digested and ligated into the SpeI-BamHI fragment of pJA060. The plasmid library was transformed into E. coli and $\sim 20,000$ colonies were scraped, pooled, and stored at $-76{ }^{\circ} \mathrm{C}$. To
validate the library, individual clones were isolated and the gerAA gene was subjected to Sanger sequencing using oJA178. $\sim 15 \mathrm{~kb}$ was sequenced and 10 mutations were found for an average of approximately one mutation per $1.4 \mathrm{~kb}($ gerAA size $=1449 \mathrm{bp})$. The plasmid library was isolated with a miniprep kit (Zymo Research, cat\#D4212), linearized by digestion with ScaI and then transformed into BJA186a. ~23,000 transformants were scraped, pooled, and stored at $-76{ }^{\circ} \mathrm{C}$ in 15\% glycerol.

Screen for constitutively active GerAA mutants

Aliquots of BJA186a containing the native gerA locus and the mutagenized library of gerAA expressed at a neutral ectopic locus were thawed and plated on LB for single colonies. Individual colonies were picked and patched to confirm the presence of the correct antibiotic markers, and then used to inoculate individual wells in deep 96 -well plates with 0.5 mL DSM. 96 -well plates were covered with a breathable membrane and incubated at $37^{\circ} \mathrm{C}$ with agitation for $24-30 \mathrm{~h}$. DSM cultures were then diluted 1:5 in water and the OD_{600} of individual wells was compared to the OD_{600} of BJA186a and BJA177a harboring $\operatorname{gerAA}(\mathrm{P} 326 \mathrm{~S})$ sporulated in triplicate. The reference patches of sporulated cultures with low optical densities were then used to inoculate 3 mL DSM. These cultures were re-screened for OD_{600} relative to BJA186a (parental control), BJA277 (yhdG::gerAA control), and BJA230 (yhdG: :gerAA[P326S] control) and additionally tested for low spore viability based on resistance to heat treatment (CFUs after $80^{\circ} \mathrm{C}$ for 20 min) and for the presence of phase-dark spores under phase-contrast illumination. Strains with low OD_{600}, low spore viability, and phase-dark spores were streaked for singles and genomic DNA was isolated. Genomic DNA was used to backcross mutants into wild-type (BDR2413) that were retested to confirm linkage. Genomic DNA was also used for PCR of the $y h d G$ locus containing the mutagenized gerAA gene using oJA176 and oJA177. Amplicons were then analyzed by Sanger sequencing using oJA117 and oJA148.

Structural modeling with AlphaFold-multimer

Protein structures were modeled using AlphaFold-multimer-v2 and ColabFold (17-19) run locally on the Harvard Medical School O2 computing cluster (https://github.com/YoshitakaMo/localcolabfold for more details. General parameters for all runs were as follows: The multiple sequence alignment (MSA) was built using mmseqs2. Sequences from the same operon were paired in the MSA, and both paired and unpaired sequences were used to generate models. Five models were generated. Models were relaxed using AMBER and ranked by pTM score; homologous templates found in the PDB were used. Specific parameters for individual runs were as follows: GerAA pentamer - maximum number of model recycling was set to 12 . The model ($\mathrm{pTM}=0.892$, $\mathrm{pLDDT}=85.3$) is used throughout the text. GerAA-GerAB-GerAC trimer maximum number of model recycling was set to 3 . The top ranked model ($\mathrm{pTM}=0.853$, $\mathrm{pLDDT}=$ 87.9) is used throughout the text. GerAA-GerAB-GerAC dimer of trimers - maximum number of recycling was set to 12 . The top ranked model ($\mathrm{pTM}=0.771, \mathrm{pLDDT}=81$) is used throughout the text. GerAC pentamer - maximum number of model recycling was set to 12 . The top ranked model $(\mathrm{pTM}=0.78, \mathrm{pLDDT}=88.5)$ is used throughout the text. The maximum number of recycling for modeling the GerQA pentamer was set to 12 and the top ranked model ($\mathrm{pTM}=0.89$, $\mathrm{pLDDT}=84.1$) is presented. Structural alignments were performed in PyMOL. Pore visualization was created with MOLEonline (43). Predicted alignment error plots were created using AlphaPickle (https://github.com/mattarnoldbio/alphapickle/tree/v1.4.0).

Evolutionary co-variation analysis

EVcouplings software (https://github.com/debbiemarkslab/EVcouplings) (20, 44, 45) version 0.0 .5 was used on multiple sequence alignments generated for GerAA, GerAB, and GerAC. Alignments were generated using the jackhmmer software (40) with 5 iterations against the unirefl 00 dataset downloaded January 2020^{61} across a range of normalized bitscores. The GerAB alignment consisted of 20,525 sequences with 95.6% coverage, at least 70% non-gap characters with fragments filtered at a threshold of 70%. The GerAA, alignment consisted of 23,876 sequences with 95.9% coverage. The GerAC alignment consisted of 21,695 sequences and 96.2% coverage. Evolutionary couplings were then calculated for these alignments using pseudolikelihood maximization to infer parameters used to calculate evolutionary couplings scores. Pairs of alignments were then concatenated using the EVcouplings complex pipeline (20). The resulting concatenated alignment, with the column coverage threshold changed to 50% and the theta parameter set to 0.9 , contained 2,011 sequences and had 96.7% of residue positions across all three protein sequences meet our coverage threshold. This software was then used to infer parameters used to calculate evolutionary couplings scores for all possible pairs of residues, both for intra-monomer and inter-monomer possible contacts. Long-range (separated by at least 5 amino acids in sequence) residue pairs with Evolutionary Coupling scores $>90 \%$ were then displayed in the contact maps shown in Figure 2D and S8.

Microscopy

30h sporulation cultures, purified phase-bright spores, and exponentially growing cells were concentrated by centrifuge at 8 Krpm , and then immobilized on 1.5% agarose pads. Phase-contrast and fluorescence microcopy were performed using a Nikon TE2000 inverted microscope equipped with Plan Apo 100x/1.4 Oil Ph3 DM objective lens and CoolSNAP HQ2 monochrome CCD camera (Photometrics). For the sporulation cultures or purified spores, the exposure times for phase-contrast and GerAA-GFP fluorescence were 250 and 800 ms , respectively. For the exponentially growing cells, the exposure times for GerAA-GFP and GerAA-mYpet were 500 ms . Image analysis and processing were performed using Fiji or MetaMorph software (Molecular Devices; version 7.7).

Analysis of membrane potential and membrane permeability

To monitor the membrane potential and membrane permeability of exponentially growing cells after induction of GerAA or GerAA(V362A), the indicated strains were grown in 30 mL LB medium at $37{ }^{\circ} \mathrm{C}$ to an OD_{600} of 0.2-0.3 and IPTG was added to a final concentration of $50 \mu \mathrm{M} .1 \mathrm{~mL}$ culture was collected at the indicated time points and $200 \mu \mathrm{~L}$ were stained with the potentiometric fluorescent dye 3,3'-Dipropylthiadicarbocyanine iodide $\left[\operatorname{DiSC}_{3}(5)\right]$ (Invitrogen, cat\#D306) by the addition of 2 $\mu \mathrm{L}$ of a $100 \mu \mathrm{M}$ stock ($1 \mu \mathrm{M}$ final), and $600 \mu \mathrm{~L}$ of culture were stained with propidium iodide (PI) (Sigma-Aldrich, cat\#P4864) ($0.5 \mu \mathrm{M}$ final). After concentration by centrifugation at 8 Krpm , the cells were immobilized on 1.5% agarose pads and analyzed by fluorescence microscopy using the RFP/mCherry filter set on a Nikon TE2000 inverted microscope equipped with Plan Apo 100x/1.4 Oil Ph3 DM objective lens and CoolSNAP HQ2 monochrome CCD camera (Photometrics). Exposure times for phase-contrast, $\operatorname{DiSC}_{3}(5)$, PI, GFP and BFP, were $250,200,200,400$, and 400 ms , respectively. $\mathrm{DiSC}_{3}(5)$ fluorescence was always imaged prior to imaging GFP and BFP. Image analysis and processing were performed using Fiji or GraphPad Prism [(version 9.4.1(458)]. Strains expressing GerAA or GerAA(V362A) lacking GerAB and GerAC were back-diluted to an OD_{600} of 0.05 when they reached an OD_{600} of 1.0 to maintain exponential growth throughout the time course.

Membrane potential and membrane permeability in exponentially growing cells after L-alanine addition was monitored as follows: the indicated strains were grown in 30 mL LB medium at $37{ }^{\circ} \mathrm{C}$
in the presence of $50 \mu \mathrm{M}$ IPTG for 1.5 hours until the OD_{600} reached 0.2 . L-alanine was then added to a final concentration of 50 mM .1 mL of culture was collected before and at the indicated timepoints after L-alanine addition and stained with $\operatorname{DiSC}_{3}(5)(1 \mu \mathrm{M}$ final) or propidium iodide (PI) $(0.5 \mu \mathrm{M}$ final) and analyzed by fluorescence microscopy as described above.

For the experiments in Supplemental Figures S18 and S19, cells expressing the wild-type gerA complex harboring Pveg-gfp, and those expressing gerAA(V362L), gerAB, gerAC or gerAA, $\operatorname{ger} A B(\mathrm{G} 25 \mathrm{~A})$, gerAC harboring Pveg-bfp were grown separately in LB medium at $37{ }^{\circ} \mathrm{C}$ until an OD_{600} of 0.5 . The cultures were then diluted to OD_{600} of 0.05 and mixed. At OD_{600} of 0.2 , L-alanine was added (50 mM final) and 60 min later membrane potential was analyzed using $\mathrm{DiSC}_{3}(5)$. The two cell types were identified by imaging GFP and BFP fluorescence as described above.

Quantification of $\mathrm{DiSC}_{3}(5)$ fluorescence and GerAA-mYpet foci

The fluorescence intensity of both $\operatorname{DiSC}_{3}(5)$-stained cells and the discrete fluorescent foci formed by co-expression of GerAA-mYpet, GerAB and GerAC-Hi6 were quantified using an Image J plugin in MicrobeJ (47). Superplots were generated using GraphPad Prism 9 (version 9.3.1). For comparisons of two strains (Figure S19 and S20), P-values were determined using a two-tailed, unpaired t-test for variance analysis. For the comparisons of more than two strains (Figure 3E and S18), P-values were determined by one-way analysis of variance (ANOVA), using Tukey's multiple comparisons tests for selected pairwise comparisons. All P-values were based on the median values of three biological replicates.

For $\operatorname{DiSC}_{3}(5)$ fluorescence quantification, all single cells in the phase contrast channel were detected based on cell area $>1.1 \mu \mathrm{~m}^{2}$, cell length $>1 \mu \mathrm{~m}$, cell width between $0.5-2 \mu \mathrm{~m}$, cell angularity <0.5 rad. The fluorescence signals in the $\mathrm{DiSC}_{3}(5)$ channel were then quantified within each cell and a median value as the fluorescence intensity.

For quantification of GerAA-mYpet foci, all single cells in the phase contrast channel were detected based on the parameters above. All GerAA-mYpet foci in YFP channel, were detected in each single cell, by setting the fluorescent tolerance value in "Maxima" to 200. Both the foci intensity (mean value) and the average fluorescence intensity (mean value) per cell, were quantified. In a subset of cells, the expression level of GerAA-mYpet was too high leading to crowded foci. It was not possible to accurately detect and quantify individual GerAA-mYpet foci in these cells. To enable analysis, cells with average fluorescence intensity greater than 800, were removed, and only foci in cells with an average fluorescence intensity less than 800, were used for further analysis in GraphPad Prism.

Co-expression and co-purification of GerAA-ProC, GerAA-FLAG, GerAB and GerAC-His6
B. subtilis strains (BYG1161, BYG1212, BYG1211) harboring IPTG- and xylose-regulated alleles of gerAA, gerAB and gerAC, were pre-cultured in LB medium at $37^{\circ} \mathrm{C}$ to an OD_{600} of 0.6 , and then diluted into 1 L LB medium supplemented with 1 mM IPTG and 3.3 mM xylose at an OD_{600} of 0.01 . The cells were grown at $37^{\circ} \mathrm{C}$ for $\sim 4 \mathrm{~h}$ and harvested at an OD_{600} of $0.8-1$ by centrifugation at 8 Krpm for 15 min . The cell pellets were washed twice with 200 mL 1 X SMM (0.5 M sucrose, 20 mM maleic acid, $20 \mathrm{mM} \mathrm{MgCl}_{2}$, adjusted to pH 6.5) and then resuspended in 40 mL 1 X SMM with $0.5 \mathrm{mg} / \mathrm{mL}$ lysozyme, and gently agitated at room temperature for $\sim 60 \mathrm{~min}$ until $>95 \%$ of the cells were converted to protoplasts as monitored by phase-contrast microscopy.

The protoplasts were pelleted by centrifugation, resuspended in 40 mL cold Lysis Buffer (50 mM HEPES $\mathrm{pH} 7.6,150 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT) supplemented with 5 units $/ \mathrm{mL}$ of benzonase (Sigma-Aldrich, cat\#E1014) and 1X complete protease inhibitor (Roche, cat $\# 05056489001$), and incubate on ice for 60 min . The membrane fraction was collected by ultracentrifugation a 35 Krpm at $4^{\circ} \mathrm{C}$ for 1 h , and then dispersed in 45 mL homogenization buffer (20 mM HEPES $\mathrm{pH} 7.6,150 \mathrm{mM} \mathrm{NaCl}$ and 20% glycerol) supplemented with 1% n-Dodecyl- β -D-maltopyranoside (DDM) (Anatrace, cat\#D310S) using a glass homogenizer. The suspension was rotated at $4{ }^{\circ} \mathrm{C}$ for 1 h followed by ultracentrifugation 35 Krpm at $4{ }^{\circ} \mathrm{C}$ for 1 h , The soluble material (Load) was supplemented with $\mathrm{CaCl}_{2}(2 \mathrm{mM}$ final) and loaded onto $1-1.5 \mathrm{~mL}$ of homemade anti-ProC antibody resin, , generated with mouse monoclonal anti-Protein C antibody, harvested from in-house hybridoma culture with clone ID of HPC-4, purified following patent US5202253A and CNBr-activated Sepharose 4B (Cytiva, cat\#GE17-0430-01). The resin was washed with 25 column volumes (CVs) of Wash Buffer (20 mM HEPES pH $7.6,150 \mathrm{mM} \mathrm{NaCl}$, 20% glycerol, $2 \mathrm{mM} \mathrm{CaCl}_{2}, 0.1 \% \mathrm{DDM}$), and the bound proteins were eluted with 5 CVs of Elution Buffer (20 mM HEPES $\mathrm{pH} 7.6,150 \mathrm{mM} \mathrm{NaCl}, 10 \%$ glycerol, 0.1% DDM, 5 mM EDTA pH 8.0, and $0.4 \mathrm{mg} / \mathrm{mL}$ ProC peptide (Genscript, Fast peptide synthesis, EDQVDPRLIDGK). $6 \mu \mathrm{~L}$ of Load and Eluate (from 5 mL) were resolved by SDS-PAGE and analyzed by immunoblot as described below.

Lysates and Immunoblot analysis

Spore lysates were generated from spores purified by Histodenz step-gradient or with lysozyme and SDS. Spores were concentrated to an OD_{600} of ~ 10 in $500 \mu \mathrm{~L}$ cold PBS with 1 mM phenylmethylsulfonyl fluoride (PMSF) (Sigma-Aldrich, cat\#52332) and transferred to 2 mL tubes containing lysis matrix B (MP Biomedicals, cat\#116911050). The spores were incubated on ice for 15 min , and then lysed using a FastPrep (MP Biomedicals) with $6.5 \mathrm{~m} / \mathrm{s}$ for 60 s . An equal volume of 2 X sample buffer (4% SDS, 250 mM Tris $\mathrm{pH} 6.8,20 \%$ glycerol, 10 mM EDTA, and Bromophenol blue) containing $10 \% \quad \beta$-mercaptoethanol was immediately added to the lysate. After centrifugation (15 Krpm for 5 m), the supernatant was collected and total protein was determined by a noninterfering protein assay (G-Biosciences, cat\#786-005). Protein concentrations were normalized and $\sim 20 \mu \mathrm{~g}$ of total protein was resolved by SDS-PAGE on 17.5% polyacrylamide gels and transferred to an Immobilon-P membrane (Millipore, cat\#IPVH00010).

Lysates from vegetative cells were generated from B. subtilis cultures grown in LB medium at 37 ${ }^{\circ} \mathrm{C}$. Cells were harvested at $\mathrm{OD}_{600} 0.5-0.8$ and 1 mL of culture was normalized to an OD_{600} of 0.5 and centrifuged. The cell pellet was resuspended in $50 \mu \mathrm{~L}$ lysis buffer (20 mM Tris $\mathrm{pH} 7.5,10$ mM EDTA, $1 \mathrm{mg} / \mathrm{mL}$ lysozyme (Sigma-Aldrich, cat\#L6876), 1 mM PMSF, $10 \mu \mathrm{~g} / \mathrm{mL}$ DNase I (NEB, cat\#M0303S), $100 \mu \mathrm{~g} / \mathrm{mL}$ RNase A (NEB, cat\#T3018L), $10 \mu \mathrm{~g} / \mathrm{mL}$ leupeptin (Fisher Scientific, cat\#78435), and $10 \mu \mathrm{~g} / \mathrm{mL}$ pepstatin (Fisher Scientific, cat\#78436), and rotated at 37 ${ }^{\circ} \mathrm{C}$ for 10 min followed by the addition of $50 \mu \mathrm{~L} 2 \mathrm{X}$ sample buffer containing $10 \% \quad \beta$ mercaptoethanol. The lysates were resolved by SDS-PAGE on 17.5% acrylamide gels and transferred to an Immobilon-P membrane (Millipore, cat\#IPVH00010).

Membranes were blocked in 5\% non-fat milk in 1XPBS with 0.5% Tween-20 (PBST), and probed with anti-GerAA $(1: 5000)(48)$, anti-His $(1: 4,000)$ (GenScript, cat\#A00186), anti-GerBC $(1: 5,000)$ (49), anti-SpoVAD ($1: 10,000$) (50), anti-GFP $(1: 5,000)$ (51), anti-FLAG (1:5,000) (SigmaAldrich, cat\#F7425), anti-ProC ($1: 1,000$) (home-made mouse monoclonal anti-Protein C antibody,
harvested from in-house hybridoma culture with clone ID of HPC-4, purified following patent US5202253A), anti-SigA (1:10,000) (52), anti-ScpB (1:10,000) (53), anti-WalI (54) (1:5000), anti-SleB $(1: 5,000)(55)$, or anti-EzrA $(1: 10,000)(56)$ diluted in 3% BSA in PBST. The primary antibodies were detected with anti-mouse $(1: 20,000)$ or anti-rabbit $(1: 3,000)$ secondary antibodies coupled to horseradish peroxidase (Bio-Rad, cat\#1706516 and cat\#1706515), and detected by Western Lightning ECL reagent (PerkinElmer, cat\#50-904-9323).

Analysis of cysteine-substituted GerAA in vegetatively growing B. subtilis

B. subtilis lysates were derived from exponentially growing cells expressing gerAA under the control of IPTG-regulated Phyperspank promoter, and gerAB and gerAC constitutively expressed under the control of the Pveg promoter. All strains contained the functional GerAA variant C100S with or without substitutions V359C and/or G361C. Single colonies of the indicated strains were grown in 3 mL LB medium at $37{ }^{\circ} \mathrm{C}$ to an OD_{600} of 0.5 . The cultures were back-diluted into 25 mL LB supplemented with $10 \mu \mathrm{M}$ IPTG and grown at $37^{\circ} \mathrm{C}$. At OD_{600} and $0.5,10 \mathrm{~mL}$ of each culture were centrifuged ($10,000 \mathrm{xg}, 2 \mathrm{~min}$). The pellets were washed once in 1 X PBS $+0.1 \%$ glycerol (PBSG) pH 7.4. Each pellet was resuspended in 1 ml of PBSG, and $200 \mu \mathrm{~L}$ of each culture was used for further analysis. Cells from $200 \mu \mathrm{~L}$ were pelleted and resuspended in $50 \mu \mathrm{~L}$ lysis buffer (20 mM Tris $\mathrm{pH} 7.5,1 \mathrm{mM}$ EDTA, $1 \mathrm{mg} / \mathrm{mL}$ lysozyme, 1 mM PMSF, $10 \mathrm{mM} \mathrm{MgCl} 2,12.5$ units of Benzonase (Sigma-Aldrich, cat\#E1014) for 10 min at $37^{\circ} \mathrm{C}$ followed by the addition of $50 \mu \mathrm{~L}$ of 2 X sample buffer (0.25 M Tris $\mathrm{pH} 6.8,4 \%$ SDS, 20% glycerol, 10 mM EDTA) supplemented with $5 \% \beta$-Mercaptoethanol. Proteins were resolved by SDS-PAGE on 17.5% acrylamide gels followed by immunoblot as described above.

Analysis of cysteine-substituted GerAA in B. subtilis spores

Immunoblots were performed with lysates from B. subtilis spores lacking all native germinant receptors and complemented with gerAA, gerAB, and gerAC, under the control of PgerA. The strains contained the functional GerAA variant C100S with or without V359C and G361C substitutions. Both strains (BLA438 and BLA463) lacked CotE and GerE (57) to enable efficient spore lysis using lysozyme. Spores were prepared from DSM agar plates as described above and were resuspended in PBS at an OD_{600} of $10.400 \mu \mathrm{l}$ of each spore preparation was pelleted, and resuspended in $50 \mu \mathrm{~L}$ lysis buffer for 10 min at $37^{\circ} \mathrm{C} .50 \mu \mathrm{~L}$ of 2 X sample buffer supplemented with $5 \% \beta$-Mercaptoethanol was added to each and the lysates were analyzed by immunoblot. For the immunoblots in Figure $\mathrm{S} 25,800 \mu \mathrm{l}$ of each spore preparation was pelleted, resuspended in 100 $\mu \mathrm{L}$ lysis buffer for 10 min at $37^{\circ} \mathrm{C}$, and then $50 \mu \mathrm{~L}$ of the lysate was mixed with $50 \mu \mathrm{~L} 2 \mathrm{X}$ sample buffer containing $5 \% \beta$-Mercaptoethanol and $50 \mu \mathrm{~L}$ was mixed with $50 \mu \mathrm{~L}$ of 2 X sample buffer containing 0.5 mM Tributylphosphine (Sigma-Aldrich, cat\#90827).

Strain Constructions:

BDR4445 [gerQA(I363A) (erm)] was generated by transforming B. cereus ATCC 10876 with pFR 69 via electroporation and selecting on $\mathrm{LB}(\mathrm{erm})$ at $30^{\circ} \mathrm{C}$. A single transformant was grown at $30^{\circ} \mathrm{C}$ for 8 h and then serially dilated and plated on LB(erm) plates and incubated overnight at $42^{\circ} \mathrm{C}$. Integration of the plasmid at the gerQA locus and the I363A mutation were confirmed by PCR and Sanger sequencing.

BLA438, BLA463 $\Delta \operatorname{cotE}::$ phleo $\Delta g e r E:: k a n$ were generated by direct transformation of isothermal assembly products generated from three PCR products. For $\Delta \operatorname{cotE}::$ phleo the pieces were (1) a 1 kb PCR product upstream of $\cot E$ amplified with oLA412 and oLA414 and B. subtilis 168 genomic DNA as template; (2) a 1 kb PCR product downstream of $\cot E$ amplified with oLA415 and oLA413 and B. subtilis 168 genomic DNA as template; (3) phleo cassette amplified with oJM028 and oJM029 from pWX468 plasmid (loxP-phleo, laboratory stock). For Δ gerE::kan the pieces were (1) a 1 kb PCR product upstream of gerE amplified with oLA416 and oLA418; (2) a 1 kb PCR product downstreem of gerE amplified with oLA419 and oLA417; (3) kan cassette amplified with oJM028, oJM029 from pWX470 plasmid (loxP-kan, laboratory stock).

BJA498, BJA500, and BJA501 were generated by random PCR mutagenesis of gerAA followed by subsequent screening and backcross (see materials and methods for screen details).

Plasmid Constructions:

pYG63[yhdG::PsspB-spoVA(Bs)(spec) (amp)] was constructed in a 3-way ligation with 2 PCR products and pCB033 cut with EcoRI and XhoI. One PCR product containing promoter region of $\operatorname{ssp} B$ (primers oYG117 and oYG118 and B. subtilis 168 gDNA) was cut with EcoRI and SpeI, and another PCR product containing spoVA operon (primers oYG148 and oYG149 and B. subtilis 168 gDNA) was cut with SpeI and XhoI. pCB033 is a double crossover integration vector at the $y h d G$ locus with a spec cassette (laboratory stock).
pYG53[yhdG::PsspB-spoVA1(Bc) (spec) (amp)] was constructed in a 3-way ligation with 2 PCR products and pCB033 cut with EcoRI and XhoI. One PCR product containing promoter region of $\operatorname{ssp} B$ (primers oYG117 and oYG118 and B. subtilis 168 gDNA) was cut with EcoRI and SpeI, and another PCR product containing spoVAl operon of B. cereus ATCC 14579 (primers oCB59 and oYG119 and B. cereus ATCC 14579 gDNA) was cut with SpeI and XhoI. pCB033 is a double crossover integration vector at the $y h d G$ locus with a spec cassette (laboratory stock).
pYG56[ycgO::PsspB-spoVA2(Bc) (kan) (amp)] was constructed in a 3-way ligation with 2 PCR products and pCB041 cut with EcoRI and XhoI. One PCR product containing promoter region of $\operatorname{ssp} B$ (primers oYG117 and oYG118 and B. subtilis 168 gDNA) was cut with EcoRI and SpeI, and another PCR product containing spoVA2 operon of B. cereus ATCC 14579 (primers oYG120 and oYG122 and B. cereus ATCC 14579 gDNA) was cut with SpeI and XhoI. pCB041 is a double crossover integration vector at the $y c g O$ locus with a kan cassette (laboratory stock).
pYG95[ycgO::PsspB-spoVA(Cdif)(kan) (amp)] was constructed in a 3-way ligation with 2 PCR products and pCB041 cut with EcoRI and XhoI. One PCR product containing promoter region of $\operatorname{ssp} B$ (primers oYG117 and oYG118 and B. subtilis 168 gDNA) was cut with EcoRI and SpeI, and another PCR product containing spoVA operon of C. difficile 630 (primers oYG255 and oYG266 and C. difficile 630 gDNA) was cut with SpeI and XhoI. pCB041 is a double crossover integration vector at the $y c g O$ locus with a kan cassette (laboratory stock).
pYG129[yhdG::PsspB-gerUA-gerUC-gerUB-gerVB(spec) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerUA operon amplified with primers
oYG324 and oYG341 using gDNA of Bacillus megaterium, and pYG53 amplified with primers oYG259 and oYG260.
pYG275 [yhdG::PgerA-gerAA(V362A)(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG596 and oYG597, and pLA39 as template.
pYG243 [yhdG::PgerA-gerAA(V362L)(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG569 and oYG570, and pLA39 as template.
pYG244 [yhdG::PgerA-gerAA(Q366L)(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG571 and oYG572, and pLA39 as template.
pYG245 [yhdG::PgerA-gerAA(Q354L)(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG573 and oYG574, and pLA39 as template.
pYG248 [yhdG::PgerA-gerAA(L358A)(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG579 and oYG580, and pLA39 as template.
pYG262[yhdG::PgerA-gerAA-gfp(tet) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gfp amplified with primers oYG110 and oYG590 using plasmid pHCL132 (laboratory stock), and pLA39 amplified with primers oYG589 and oYG352.
pYG253[yhdG::PgerA-gerAA(V362L)-gfp(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG569 and oYG570, and pYG262 as template.
pYG254[yhdG::PgerA-gerAA(Q366L)-gfp(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG571 and oYG572, and pYG262 as template.
pYG255[yhdG::PgerA-gerAA(Q354L)-gfp(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG573 and oYG574, and pYG262 as template.
pYG263[yhdG::Pspank-gerAA(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA with primers oYG600 and oYG601 using plasmid pLA39, and pCB057 cut with HindIII and SpeI. pCB057 is a double crossover integration vector at the $y h d G$ locus with a erm cassette and IPTG-inducible promoter Pspank (laboratory stock).
pYG264[yhdG::Pspank-gerAA(V362A)(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG596 and oYG597, and pYG263 as template.
pYG265[yhdG::Phy-gerAA(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA with primers oYG600 and oYG601 using plasmid pLA39, and pCB100 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the $y h d G$ locus with a erm cassette and IPTG-inducible promoter Phyperspank (laboratory stock).
pYG266[yhdG::Phy-gerAA(V362A)(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG596 and oYG597, and pYG265 as template.
pYG268[yhdG::Phy-gerAA(V362L)(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG569 and oYG570, and pYG265 as template.
pYG304[ycgO::Phy-gerAB(spec) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAB with primers oYG650 and oYG651 using plasmid pLA13, and plasmid pCB090 cut with HindIII and SpeI. pCB090 is a double crossover integration vector at the $y c g O$ locus with a spec cassette and IPTG-inducible promoter Phyperspank (laboratory stock).
pYG442[ycgO::Phy-gerAB(G25A)(spec) (amp)] was constructed by site-directed mutagenesis using primer oLA197, and pYG304 as template.
pYG305[yvbJ::Phy-gerAC-His6(Cm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAC-His6 with primers oYG652 and oYG653 using plasmid pLA131, and plasmid pCB124 cut with HindIII and SpeI. pCB124 is a double crossover integration vector at the $y v b J$ locus with a cat cassette and IPTG-inducible promoter Phyperspank (laboratory stock).
pYG276[yhdG::Phy-gerAA-gfp(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA-gfp with primers oYG600 and oYG614 using pYG262, and plasmid pCB100 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the $y h d G$ locus with a erm cassette and IPTG-inducible promoter Phyperspank (laboratory stock).
pYG278[yhdG::Phy-gerAA-proC(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA-proC and plasmid pCB100 cut with HindIII and SpeI. The PCR product was first amplified with primers oYG619 and oYG617 using plasmid pCB276, and subsequently the PCR product was used as a template with primers oYG619 and oYG618 to generate gerAA-proC. pCB100 is a double crossover integration vector at the $y h d G$ locus with a erm cassette and IPTG-inducible promoter Phyperspank (laboratory stock).
pYG316[yhdG::Pxyl-gerAA-proC(phleo) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA-proC with primers oYG659 and oYG667 using plasmid pYG278, and plasmid pCB109 cut with HindIII and XhoI. pCB109 is a double crossover integration vector at the $y h d G$ locus with a phleo cassette and xylose-inducible promoter PxylA (laboratory stock).
pYG383[lacA::Pxyl-gerAA-FLAG(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing Pxyl-gerAA-FLAG with primers oYG685 and oYG534 using plasmid pYG316, and plasmid backbone amplified with primers oYG684 and oYG721 using plasmid pDR183. pDR183 is a double crossover integration vector at the lacA locus with an erm cassette (laboratory stock).
pYG372[yhdG::Pxyl-gerAA(phleo) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing Pxyl-gerAA with primers oYG659 and oYG745 using plasmid pYG316, and plasmid pCB109 cut with HindIII and XhoI. pCB109 is a double crossover integration vector at the $y h d G$ locus with a phleo cassette and xylose-inducible promoter PxylA (laboratory stock).
pYG313[yhdG::Pxyl-gerAA-gfp(phleo) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing Pxyl-gerAA-gfp with primers oYG658 and oYG659 using plasmid pYG276, and plasmid pCB109 cut with HindIII and XhoI. pCB109 is a double crossover integration vector at the $y h d G$ locus with a phleo cassette and xylose-inducible promoter PxylA (laboratory stock).
pYG440[yhdG::Pxyl-gerAA(V362L)-gfp(phleo) (amp)] was constructed by site-directed mutagenesis using primers oYG569 and oYG570, and pYG313 as template.
pYG359[yhdG::Pxyl-gerAA-mYpet(phleo) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing mYpet with primers pYG738 and pYG739 using plasmid pWX318(laboratory stock), and plasmid backbone amplified with primers oYG737 and oYG352 using plasmid pYG313.
pYG441[yhdG::Pxyl-gerAA(V362L)-mYpet(phleo) (amp)] was constructed by site-directed mutagenesis using primers oYG569 and oYG570 and pYG359 as template.
pYG344[yhdG::Phy-gerAA(L348A)(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG699 and oYG700, and pYG265 as template.
pYG345[yhdG::Phy-gerAA(T355M)(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG701 and oYG702, and pYG265 as template.
pYG282[yhdG::Phy-gerAA(L358A)(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG579 and oYG580, and pYG265 as template.
pYG365[ycgO::Pveg-gerAB(G25A)(spec) (amp)] was constructed by site-directed mutagenesis using primer oLA197, and pLA155 as template.
pYG298[yhdG::Phy-gerAA(V362A)-proC(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG596 and oYG597, and pLA155 as template.
pYG427[yhdG::Phy-gerAA-FLAG(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA-FLAG with primers oYG619 and oYG821 using plasmid pYG383, and plasmid pCB100 cut with HindIII and SpeI. pCB100 is a double crossover integration vector at the $y h d G$ locus with a erm cassette and IPTG-inducible promoter Phyperspank (laboratory stock).
pYG428[yhdG::Phy-gerAA(V362A)-FLAG(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG596 and oYG597, and pYG427 as template.
pYG366[yhdG::Phy-gerAA(V362A)-gfp(erm) (amp)] was constructed by site-directed mutagenesis using primers oYG596 and oYG597, and pYG276 as template.
pYG363[yvbJ::PgerA-gerAA(V362L)(cat) (amp)] was constructed in a 2-way ligation with a PCR product containing PgerA-gerAA(V362L) with primers oLA112 and oLA41 using plasmid pYG243, and plasmid pCB006. Both were cut with EcoRI and BamHI. pCB006 (yvbJ::cat) is a double crossover integration vector at the $y v b J$ locus with a cat cassette (laboratory stock).
pYG409[yhdG::PgerA-(weakRBS)-gerAA(tet) (amp)] was constructed by site-directed mutagenesis using primers oYG788 and oYG789, and pLA39 as template. The native gerAA RBS (AGAGGTGAA) was mutated to TGAGGTGAA resulting in an ~ 8-fold reduction in GerAA levels in purified spores.
pYG422[yvbJ::Pveg-BFP(kan) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing Pveg-BFP with primers oYG812 and oYG813 using plasmid pER083(laboratory stock), and plasmid backbone amplified with primers oYG292 and oYG293 using plasmid pCB047. pCB047 ($y v b J:: k a n$) is a double crossover integration vector at the $y v b J$ locus with a kan cassette (laboratory stock).
pYG423[yvbJ::Pveg-gfp(kan) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing Pveg-gfp with primers oYG812 and oYG814 using plasmid pER117(laboratory stock), and plasmid backbone amplified with primers oYG292 and oYG293 using plasmid pCB047. pCB047 ($y v b J:: k a n$) is a double crossover integration vector at the $y v b J$ locus with a kan cassette (laboratory stock).
pYG460[yhdG::Pspank-gerAA-mYpet(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA-mYpet with primers oYG868 and oYG832 using plasmid pYG359, and the plasmid pCB057 cut with HindIII and SpeI.
pYG469[ycgO::Pxyl-gerAB(spec) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAB with primers oYG885 and oYG886 using plasmid pYG304, and plasmid pCB096 cut with HindIII and XhoI. pCB096 [ycgO ::Pxyl (spec)] is a double crossover integration vector at the $y c g O$ locus with a spec cassette and the xylose-inducible promoter PxylA (laboratory stock).
pYG470[yvbJ::Pxyl-gerAC(cat) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAC with primers oYG883 and oYG887 using B. subtilis 168 gDNA, and plasmid pCB130 cut with HindIII and XhoI. pCB130 [yvbJ: $\because P x y l$ (cat)] is a double crossover integration vector at the $y v b J$ locus with a cat cassette and the xylose-inducible promoter PxylA (laboratory stock).
pFR69 [pMiniMAD-Pveg-mCherry-gerQA(I363A) (erm) (amp)] was constructed by isothermal assembly of three pieces: 1) plasmid pFR50 cut with SalI and BamHI, 2) a PCR product containing $\sim 1.36 \mathrm{~kb}$ upstream of GerQA(I363), and 3) a PCR product containing $\sim 1.37 \mathrm{~kb}$ downstream of GerQA(I363). Both PCR products were amplified using gDNA from B. cereus ATCC 10876 as
template and oligonucleotides primers oFR399/oFR400 and oFR401/oFR402, respectively. pFR50 is a pMiniMAD-derived vector for looping-in and out in Gram (+) bacteria that contains m Cherry under control of the B. subtilis 168 veg promoter (Ramírez-Guadiana and Rudner, unpublished).
pLA178 [yhdG::Phy-RBSgerAB-gerAA(C100S)(erm) (amp)] was constructed by site-directed mutagenesis using the primer oLA323 and pYG265 as template.
pLA191 [yhdG::PgerA-RBSgerAB-gerAA(C100S, V359C, G361C)(tet) (amp)] was constructed by site-directed mutagenesis using the primer oLA384 and pLA137 as template.
pLA201 [yhdG::Phy-RBSgerAB-gerAA(C100S, V359C, G361C)(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing gerAA(C100S, V359C, G361C) with primers oYG600 and oYG601 using plasmid pLA191, and the plasmid pCB100 restricted with HindIII and SpeI. pCB100 (yhdG::erm) is a double crossover integration vector at the $y h d G$ locus with an erm cassette (laboratory stock).
pLA202 [yhdG::Phy-RBSgerAB-gerAA(C100S, V359C)(erm) (amp)] was constructed in away isothermal assembly reaction with a PCR product containing gerAA(C100S, V359C) with primers oYG600 and oYG601 using plasmid pLA192, and the plasmid backbone of pCB100 restricted with HindIII and SpeI. pCB100 is a double crossover integration vector at the $y h d G$ locus with an erm cassette (laboratory stock). pLA192 [yhdG::PgerA-RBSgerAB-gerAA(C100S, V359C) (tet) (amp)] was constructed by site-directed mutagenesis using the primer oLA408 and pLA137 as a template.
pLA203 [yhdG::Phy-RBSgerAB-gerAA(C100S, G361)(erm) (amp)] was constructed in a 2-way isothermal assembly reaction with a PCR product containing $\operatorname{gerAA}(\mathrm{C} 100 \mathrm{~S}, \mathrm{G} 361 \mathrm{C})$ with primers oYG600 and oYG601 using plasmid pLA193, and the plasmid backbone of pCB 100 restricted HindIII and SpeI. pCB100 is a double crossover integration vector at the $y h d G$ locus with an erm cassette (laboratory stock). pLA193 [yhdG::PgerA-RBSgerAB-gerAA(C100S, G361C)(tet) (amp)] was constructed by site-directed mutagenesis using the primer oLA409 and pLA137 as a template.
pJA047 [yhdG::gerAA(P326S) (tet)(amp)] was constructed by site-directed mutagenesis of pLA39 [yhdG: $\because P_{\text {ger } A}-($ RBSgerAB)-gerAA (tet) $]$ using oJA105 and oJA106
pJA060 [yhdG:: $\left.\boldsymbol{P}_{\text {gera }}(\mathbf{s p e c})(\boldsymbol{a m p})\right]$ was constructed by ligation of the EcoRI-SpeI fragment of pLA39 [yhdG: $: P_{\text {gerA }}-($ RBSgerAB)-gerAA (tet)] into pCB033. pCB033 [yhdG: :spec] is a double crossover integration vector at the $y h d G$ locus with an erm cassette (laboratory stock).

The sequence of all plasmids was confirmed by Sanger sequencing.

A

B. subtilis spoVA | AA | AB | AC | AD | AEb | AEa | AF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

B. cereus spoVA1	AA	AB	AC	AD	AEb	AEa	AF
	48%	55%	71%	68%	72%	62%	64%

B. cereus spoVA2	DuF1657	yhco/(yla)	AC	AD	AEb	DuF1657	DuF421/DUF1657

C. difficile spoVA

AC	AD	AEb
48%	47%	42%

B

Figure S1. Comparison of sequence identity between SpoVA homologs and germination receptor proteins. (A) Schematics of the spoVA locus. B. subtilis spoVA contains seven genes but only spoVAC (AC), spoVAD (AD), and spoVAEb (AEb) (shown in blue) are required for DPA import into spores during sporulation and DPA release during germination (6). B. cereus contains two spoVA loci. The spoVA1 operon is similar to the B. subtilis spoVA operon. The spoVA2 locus encodes AC, AD, and AEb homologs and four unrelated proteins. The C. difficile locus only encodes AC, AD, and AEb homologs. The percent identities relative to the B. subtilis homologs are indicated below each gene. The lighter the blue the lower the percent identity. The B. cereus loci are from the ATCC 14579 strain. The C. difficile spoVA locus is from strain 630. (B) The B. megaterium gerUV locus encodes two B subunits, GerUB and GerVB. The percent identity of each subunit is compared to the five germinant receptor loci in B. subtilis. Although the $y f k$ and ynd operons encode GerA-family proteins, the germinants these factor respond to have not been identified. The percent identities relative to the B. megaterium homologs are indicated below each gene. The lighter the red the lower the identity. The B. megaterium gerUV locus is from strain QM B1551.

Figure S2. Biological replicates of the cross-species complementation of the SpoVA transporter. (A,B) spoVA loci from B. cereus and C. difficile support DPA release from B. subtilis spores in response to L-alanine. Purified spores of $\triangle s p o V A$ mutant strains harboring an ectopic copy of the indicated spoVA (5A) locus from B. subtilis (Bs), B. cereus (Bc), or C. difficile (Cdif). Spores were mixed with 1 mM L-alanine and DPA release was monitored over time. The inserts show total DPA content in the purified spores.

Figure S3. Cross-species complementation of key germination factors. (A) The spoVA loci from B. cereus and C. difficile support B. subtilis germination in response to L-alanine. Purified spores of Δ spoVA mutant strains harboring an ectopic copy of the indicated spoVA (5A) locus from B. subtilis (Bs), B. cereus (BC), or C. difficile (Cdif) were mixed with 1 mM L-alanine and the optical density was monitored over time. (B) B. subtilis spores lacking native germinant receptors ($\Delta 5$) and harboring the gerUV locus from B. megaterium support germination in response to a mixture of 10 mM D-glucose, L-leucine, L-proline and K^{+}(GLPK) as assayed by a drop in optical density. Spores harboring GerA (red circles) are unable to respond to GLPK. (C,D) B. subtilis spores lacking native germinant receptors ($\Delta 5$) and harboring the gerUV locus from B. megaterium are unable to germinate in response to L-alanine as assayed by DPA release (C) and a drop in optical density (D). Spores harboring the gerA locus efficiently release DPA and drop in optical density in response to L-alanine. Representative data from one of three biological replicates are shown in each panel.

Figure S4. Heat-resistant spore formation is reduced in strains with non-native spoVA loci due to GerA-dependent premature germination. (A) Representative phase-contrast images of sporulating cultures of the indicated strains in the presence and absence of gerA. Scale bar, $2 \mu \mathrm{~m}$. Sporulation efficiencies, as assayed by heat-resistance ($80^{\circ} \mathrm{C}$ for 20 m) CFU, are shown in the lower left corner of each image. Strains with less homologous SpoVA proteins have fewer mature (phase-bright) spores and reduced sporulation efficiency. The suppression in the $\Delta g e r A$ background indicates that these defects are due, in part, to premature activation of GerA. We have previously shown that GerA-dependent premature germination often results from impaired or slowed DPA accumulation in the spore core (6). (B) Purified phase-bright spores from all strains from (A) have similar levels of DPA, indicating that spores that successfully complete spore formation accumulate wild-type levels of DPA. (C) Analysis of spore germination as assayed by DPA release and drop in optical density using a mixtures of $10 \mathrm{mM} \mathrm{L-asparagine}, \mathrm{D-glucose}, \mathrm{D-}$ fructose, and K^{+}(AGFK) that activates the GerB/GerK receptors. The phase-bright spores produced from strains with non-native spoVA loci and lacking GerA germinate as well as or better than wild-type B. subtilis spores. The more rapid initiation of germination of spores with non-native spoVA loci is likely due to the more rapid unplugging of the non-native SpoVA channels (6). Representative data from one of at least three biological replicates are shown in each panel.

Figure S5. Predicted local distance difference tests and alignment error for the AlphaFold-predicted trimer and pentamers. (A) Structural model of the GerA trimer (left). Predicted local distance difference tests (pLDDT) per position mapped onto the GerA trimer model (middle). Higher pLDDT (blue) corresponds to a more confident prediction. Predicted alignment error in \AA of all residues against all residues for the top-ranked model (right). Low error (blue) corresponds to well-defined relative domain positions. (B,C) Structural models of the GerAA and GerAC pentamers (left); predicted local distance difference tests (pLDDT) per position mapped onto the pentamer models (middle); predicted alignment error in \AA of all residues against all residues for the top-ranked models (right). The per-residue accuracy of the structure (pLDDT) and the estimate of the template modeling score (pTM) for each model is shown below the predicted structures on the left.

Figure S6. AlphaFold model of a dimer of GerAA-GerAB-GerAC trimers. (A) Structural prediction of a dimer of GerA trimers as viewed from the membrane. GerAA protomers are shown in red and light gray; GerAC protomers are shown in purple and light gray; and both GerAB protomers are displayed in cyan. (B) Viewed from above, the L-alanine-binding pockets in each GerAB protomer are visible. (C) Predicted alignment error (in Å) of all residues against all residues for the top-ranked dimer of trimers. Low error (blue) corresponds to well-defined relative domain positions. (D) Angle between GerAA protomers in the dimer of trimer model. Top-down view of the transmembrane domains of the GerAA protomers. The angle between each protomer ($\sim 69^{\circ}$) is consistent with a pentamer of GerAA-GerAB-GerAC trimers.

Figure S7. AlphaFold-predicted structure of the GerA complex and accessibility of the L-alanine binding pocket. (A) Space filling models of the predicted pentamer of trimers shown from outside looking in (left), within the membrane (middle), and inside looking out (right). GerAA protomers are shown in red, light and dark gray; GerAC protomers are shown in purple and light and dark gray; GerAB protomers are shown in cyan. (B) Ribbon models as in (A). (C) Spacing-filling model of the GerA complex from outside the spore looking in. A slight tilt of the complex reveals the L-alanine binding pocket (10). Characterized residues that line the pocket are colored dark blue.

Figure S8. Alignment of GerAA in the GerA trimer model with a GerAA protomer in the independently predicted pentamer. (A) Top-down view of the GerA complex. An AlphaFold model of the GerAA-GerAB-GerAC trimer was aligned to an AlphaFold model of the GerAA pentamer using a shared GerAA protomer. The root-mean-square deviation (RMSD) between the predictions for GerAA in the two models is 0.581 Å over 308 atoms. This process was repeated four more times to arrive at the full 15-mer complex presented throughout the paper. (B) Alignment of the GerAC model (light gray) and the experimentally determined crystal structure of GerBC from B. subtilis (red) (PDB: 3n54) (58) is shown on the top. The RMSD between the model and crystal structure is $1.831 \AA$ A over 165 atoms. Alignment of the soluble cytoplasmic domain of GerAA (light gray) and the experimentally determined crystal structure of the cytoplasmic domain of the A subunit of GerK ${ }_{3}$ from B. megaterium (red) (PDB: 6059) (59) is shown below. The RMSD between the model and crystal structure is $1.38 \AA$ over 215 atoms.

Figure S9. Evolutionary co-variation analyses of GerAA, GerAB and GerAC. (A) Evolutionarily-coupled (EC) residue pairs with probabilities ≥ 0.99 within GerAA, GerAB, and GerAC and between subunits are plotted as black circles. Residue pairs that are ≤ 8 A apart in the AlphaFold-predicted dimer of trimers structure are shown as light blue (intra-protomer) and orange (interprotomer) circles. Red circles highlight EC residue pairs in GerAA and GerAB subunits and GerAB and GerAC subunits in distinct GerAA-GerAB-GerAC trimers. (B) Intra-protomer EC residue pairs mapped onto AlphaFold-predicted structures. All highconfidence EC residue pairs present in adjacent GerAC subunits (top) and 22 of the 42 high-confidence EC residue pairs present in adjacent GerAA subunits (bottom) are shown with red lines connecting them.

Figure S10. Comparative structural analysis of the GerA complex and the human nicotinic acetylcholine receptor complex. (A) Predicted pores (in light blue) of the GerAA pentamer (left, as in Figure 2E) and the human nicotinic acetylcholine receptor (right, PDB: 6pv7) (60). Three protomers of each pentamer are shown and the extracellular domains of the acetylcholine receptor have been omitted for clarity. (B) Top-down view of both channels showing the concentric helices surrounding the pore. (C) Side view of both channels highlighting acidic residues (red) on either side of the membranespanning pore region. (D) Predicted pore of the GerAA pentamer with V362 (red) and glycine patch (blue) in TM3 highlighted. The model has been rotated relative to (A) for clarity.

Figure S11. A genetic screen for constitutively active gerAA alleles. (A) Photograph of cultures of sporulating cells harboring an ectopic copy of the indicated gerAA variant. The optical density (O_{600}) of the cultures relative to wild-type are shown below the image. Constitutively active mutants cause lysis during sporulation resulting in reduced optical density. The previously characterized $\operatorname{ger} A A(P 326 S)$ mutant served as the positive control. The three mutants with the greatest reduction in OD_{600} are shown. (B) Top-down and cutaway side view of the GerAA pentameric channel. Residues that were hit in the screen are highlighted in green. L358 was not identified in the screen but was tested afterwards. (C) Representative phase-contrast images of sporulating cultures of the indicated strains in the presence and absence sleB. The GerAA(P326S) mutant displays the characteristic premature germination phenotype with phase-dark spores. The other four mutants display significant lysis and teardrop-shaped spores. sleB encodes a cell wall hydrolase that degrades spore peptidoglycan during germination and during premature germination. In the absence of sleB ($\Delta s / e B$) the newly identified mutants have less lysis and more teardrop-shaped spores. Scale bar, $5 \mu \mathrm{~m}$. (D) Increased magnification of images in (C) highlighting the lysis and morphologically distinct spores. Representative data from one of four biological replicates are shown.

Figure S12. Amino acid substitutions of residues in the GerAA channel predicted to reduce the pore size fail to germinate in response to L-alanine. (A) Top-down and cutaway side view of the predicted GerAA pentameric channel. Residues that line the lumen of the channel are shown in blue. (B) Phase-contrast images of purified spores from the indicated strains. The gerAA alleles are the sole copy of gerAA in these strains. Scale bar, $5 \mu \mathrm{~m}$. (C) Bar graphs showing the total $\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$, and DPA content in the spores from (B). 1 mL of spores at an OD_{600} of 5 was analyzed for each strain. (D) Purified spores that have GerAA(WT) (circles) or the indicated mutants (squares) as the only copy of the GerAA subunit were mixed with 10 mM L-alanine and the germination exudates were collected at the indicated timepoints and analyzed for $\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$, and DPA. The percent release at each time point, relative to the amount released at 60 min , is shown. Representative data from one of three biological replicates are shown in each panel.

Figure S13. GerAA mutants predicted to reduce the pore size of the membrane channel fail to germinate in response to L-alanine but are stable and stabilize GerAC. (A,B) Plate reader-based germination assays using the same spores as those used in Figure S12. (A) DPA release after L-alanine addition over time. (B) OD600 was monitored over time after addition of L-alanine. (C) Representative immunoblots from lysates of the purified spores in Figure S12. GerAA(WT) and GerAA variants are stable and stabilize GerAC-His. GerAC-His is unstable in spores lacking GerAA (\triangle gerAA). SpoVAD and SigA control for loading. (D) Representative fluorescence images of GerAA(WT)-GFP and indicated GerAA variants in spores. Scale bar, $2 \mu \mathrm{~m}$. GerAA localizes in germinosome foci (yellow carets). Representative data from one of three biological replicates are shown for (A), (B) and (D), and one of two biological replicates for (C).

Figure S14. A Bacillus cereus GerQA mutant predicted to widen the membrane channel causes premature germination. (A) Alignment of the AlphaFold-predicted structures of B. subtilis GerAA (red) and B. cereus GerQA (aquamarine). The position of GerAA(V362) and GerQA(I363) are shown in dark blue (Left). Top-down view of the AlphaFold-predicted GerQA pentamer. The three TM segments from each GerQA protomer that make up the concentric rings that surround the membrane channel are shown. I363 is highlighted (Right). (B) Representative phase-contrast images of sporulated cultures of wild-type B. cereus and a merodiploid strain harboring $\operatorname{ger} Q A(1363 A)$. The majority of spores in the gerQA(I363A) mutant culture have undergone premature germination. Scale bar, $10 \mu \mathrm{~m}$. Representative data from one of three biological replicates are shown.

Figure S15. Low level expression of GerAA(V362A) impairs growth. (A) Serial dilutions of wild-type B. subtilis 168 and strains harboring IPTG-regulated alleles of $\operatorname{gerAA}(\mathrm{WT})$ and $\operatorname{gerAA}(\mathrm{V} 362 \mathrm{~A})$ with constitutively expressed (Pveg) gerAB and gerAC-His. The IPTG-inducible promoter (Pspank) is ~7-fold weaker than Phyperspank used in all other figures. (B) Zoom-in showing the impaired growth caused by $\operatorname{ger} A A(\mathrm{~V} 362 \mathrm{~A})$ expression in the presence of $10 \mu \mathrm{M}$ IPTG. (C) Representative immunoblots of the Pspank-gerAA(WT) strain in (A) grown in LB medium with the indicated concentrations of IPTG. GerAA(WT) was used instead of GerAA(V362A) due to impaired growth and lysis of the mutant allele. GerAA levels were almost undetectable at $10 \mu \mathrm{M}$ IPTG yet were sufficient to impair growth. Constitutively expressed GerAC-His was analyzed for comparison. ScpB controlled for loading. Unlike during sporulation, GerAA, GerAB, and GerAC do not depend on each other for stability when expressed during vegetative growth. Representative data from one of three biological replicates are shown for (A) and (B) and one of two biological replicates for (C).

Figure S16. GerAA mutants that trigger premature germination during sporulation cause cell death when expressed during vegetative growth. (A) Top-down and cutaway side views of the GerAA pentameric channel. Residues that were hit in the screen for constitutively active alleles described in Figure S11 are highlighted in green. L358 was not identified in the screen but was tested afterwards. (B) Serial dilutions of the indicated strains with IPTG-regulated gerAA alleles and constitutively expressed gerAB and gerAC-His. The IPTG-regulated promoter Phyperspank (Phyper) is ~ 7-fold stronger that Pspank used in Figure S15. Cells with Phyper-gerAA(V362A), (L348A), or (T355M) die in the presence of IPTG. Cells expressing gerAA(L358A) lyse in stationary phase. Representative data from one of four biological replicates are shown.

Figure S17

P(IPTG)-gerAA(V362A) Pveg-gerAB Pveg-gerAC-His

P(IPTG)-gerAA(V362A)

B

Figure S17. The GerA complex behaves like an ion channel when expressed in vegetatively growing cells. (A) Representative fluorescence images of exponentially growing cultures of the indicated strains. Time (in min) after IPTG addition ($50 \mu \mathrm{M}$ final) is indicated above each pair of images. The upper panels show fluorescence of the potentiometric dye $\mathrm{DiSC}_{3}(5)$; the lower panels show propidium iodide (PI) staining. The two fields are from the same culture and timepoint but were stained and imaged separately. The loss of membrane potential in cells expressing GerAA(V362A), GerAB, and GerAC can explain the pervasive lysis and teardrop-shaped spores observed during sporulation. Scale bar, $5 \mu \mathrm{~m}$. (B) Positive control for $\mathrm{DiSC}_{3}(5)$. Representative phasecontrast and fluorescence images of wild-type B. subtilis stained with $\mathrm{DiSC}_{3}(5)$ before and 2 min after addition of gramicidin, which generates membrane pores and dissipates membrane potential. Representative data from one of at least three biological replicates are shown in each panel.

Figure S18. L-alanine triggers a drop in membrane potential in vegetative cells expressing the wild-type GerA complex. (A) Representative $\mathrm{DiSC}_{3}(5)$ and propidium iodide (PI) fluorescence images from exponentially growing cultures expressing GerAA, GerAB, and GerAC before and after L-alanine (L-ala) addition or a mixture of L- and D-alanine. (B) Exponentially growing cultures of strains expressing GerAA, GerAB, GerAC or the indicated variants. Time in minutes after addition are indicated above the images. Pl staining is only shown for the 60 min timepoint. The two images at 60 min are from the same cultures but were stained and imaged separately. Scale bar, $5 \mu \mathrm{~m}$. The DiSC3(5) fluorescence intensities 30 min after L-alanine addition were quantified from three biological replicates (>500 cells for each) and plotted in different colors. Triangles indicate the median fluorescence intensity for each replicate, red lines show the median values for all cells per strain. P-value <0.0001 ${ }^{(* * * *}$) and not significant (ns) are indicated.

Figure S19. L-alanine triggers a drop in membrane potential in vegetative cells expressing the wild-type GerA complex compared to cells expressing a complex containing $\operatorname{Ger} A B(V 362 \mathrm{~L})$. A co-culturing experiment was performed to more rigorously control for intracellular $\mathrm{DiSC}_{3}(5)$ accumulation and fluorescence imaging. A strain expressing GerAA(WT), GerAB, GerAC-His, and GFP was co-cultured with a strain expressing GerAA(V362L), GerAB, GerAC, and BFP. L-alanine (50 mM final) was added to the exponentially growing co-culture and 60 min later the cells were stained with $\mathrm{DiSC}_{3}(5)$ and analyzed by fluorescence microscopy. GFP and BFP fluorescence identifies the two cell types in the field and $\mathrm{DiSC}_{3}(5)$ reports on their membrane potential. Scale bar is $5 \mu \mathrm{~m}$. A field of cells is shown at the top and a zoom in of the boxed region (red) is shown below. Red carets highlight individual cells expressing GerAA(WT) with reduced membrane potential and yellow carets highlight individual cells expressing GerAA(V362L) with higher negative membrane potential. $\mathrm{DiSC}_{3}(5)$ fluorescence was quantified from sparser fields of cells from three biological replicates (>500 cells per replicate) and plotted together each with a different color. Triangles indicate the median fluorescence intensity for each replicate and red lines show the median values for all cells per strain. The difference in fluorescence intensity between cells expressing GerAA(WT) and GerAA(V362L) was significant (P < 0.0001). GerAA(WT)-mYpet and GerAA(V362L)-mYpet form similar fluorescent foci in the presence of GerAB and GerAC, indicating both assembled into similar complexes.

Figure S20
Gao, Amon, Artzi et al.

Figure S20. L-alanine triggers a drop in membrane potential in vegetative cells expressing the wild-type GerA complex compared to cells expressing a GerA complex containing GerAB(G25A). A co-culturing experiment was performed to more rigorously control for intracellular $\mathrm{DiSC}_{3}(5)$ accumulation and fluorescence imaging. A strain expressing GerAA, GerAB(WT), GerAC-His, and GFP was co-cultured with a strain expressing GerAA, GerAB(G25A), GerAC, and BFP. L-alanine (50 mM final) was added to the exponentially growing co-culture and 60 min later the cells were stained with $\mathrm{DiSC}_{3}(5)$ and analyzed by fluorescence microscopy. GFP and BFP fluorescence identifies the two cell types in the field and $\mathrm{DiSC}_{3}(5)$ reports on their membrane potential. Scale bar is $5 \mu \mathrm{~m}$. A field of cells is shown at the top and a zoom in of the boxed region (red) is shown below. Red carets highlight individual cells expressing GerAB(WT) with reduced membrane potential and yellow carets highlight individual cells expressing GerAB(G25A) with higher negative membrane potential potential. $\mathrm{DiSC}_{3}(5)$ fluorescence was quantified from sparser fields of cells from three biological replicates (>500 cells per replicate) and plotted together each with a different color. Triangles indicate the median fluorescence intensity for each replicate and red lines show the median values for all cells per strain. The difference in fluorescence intensity between cells expressing $\operatorname{GerAB}(\mathrm{WT})$ and $\operatorname{GerAB}(\mathrm{G} 25 A)$ was significant ($\mathrm{P}=0.0002$). GerAA-mYpet formed similar fluorescent foci in the presence of GerAC and either $\operatorname{GerAB}(W T)$ or $\operatorname{GerAB}(G 25 A)$, indicating both assembled into similar complexes.

Figure S21. Fusing ProC, GFP, or FLAG to GerAA does not impact function as assayed by GerAA(V362A) killing. Serial dilutions of strains harboring IPTG-regulated $\operatorname{ger} A A(\mathrm{WT})$ and $\operatorname{gerAA}(\mathrm{V} 362 \mathrm{~A})$ fusions to Protein C (ProC), GFP, or FLAG and constitutively expressed gerAB and gerAC-His. The IPTG-regulated promoter (Phyper) is ~ 7-fold stronger that Pspank used in Figure S15. Cells harboring Phyper-gerAA(V362A) and ProC, GFP, and FLAG fusions are not viable in the presence of IPTG. Representative data from one of three biological replicates are shown.

Figure S22. GerAA-GFP fluorescent foci require expression of GerAB and GerAC. (A) Representative fluorescence images of vegetative cells expressing GerAA-GFP in the presence and absence of GerAB and GerAC-His. The GerAA-GFP fusion was expressed under the control of a xylose-regulated promoter (PxyIA) at the indicated concentrations. GerAB and GerAC-His were expressed under the control of the IPTG-regulated promoter Phyperspank with 1 mM IPTG. Scale bar, $5 \mu \mathrm{~m}$. (B) Immunoblots using lysates from the same strains in (A) grown in the presence of 1 mM IPTG and 3.3 mM xylose. Full-length GerAA-GFP and the minor degradation products were similar in all four strains. GerAC-His was analyzed as a control and ScpB controls for loading. Representative data from one of three biological replicates are shown for (A) and one of two biological replicates for (B).

A
$\mathrm{P}_{(\text {(xy|A) }}$-gerAA-mYpet $\mathrm{P}_{(\text {(IPTG })}$-gerAB $\mathrm{P}_{(\text {IPTG })}$-gerAC-His (1mM IPTG)

B
$\mathrm{P}_{(\text {IPTG) }}$-gerAA-mYpet $\mathrm{P}_{(\text {(xylA })}$-gerAB $\mathrm{P}_{(\text {(xylA) }}$-gerAC-His (33 mM xylose)

Figure S23. GerAA-mYpet fusions form discrete fluorescent foci with similar intensities when expressed at a different levels. Representative fluorescent images of vegetative cells expressing GerAA-mYpet in the presence of GerAB and GerAC-His. (A) GerAA-mYpet was expressed under the control of a xylose-regulated promoter ($\mathrm{P}_{\mathrm{xyl}} \mathrm{A}$) at the indicated concentrations of xylose. GerAB and GerAC-His were expressed under the control of an IPTG-regulated promoter with 1 mM IPTG. Scale bar, $5 \mu \mathrm{~m}$. (B) GerAA-mYpet was expressed under the control of an IPTG-regulated promoter at the indicated concentrations of IPTG. GerAB and GerAC-His were expressed under the control of the xylose-regulated promoter P (xyIA) with 33 mM xylose. The exposure time (500 ms) was the same for all conditions. The images at the top were scaled identically. The same images below were adjusted to best visualize the fluorescent foci. (C) Quantification of GerAA-mYpet foci intensities for the indicated strains and concentrations of inducers. The fluorescence intensities of foci from >500 cells from sparser fields of the strains in (A) and (B) were quantified using a custom spot-detection plugin in MicrobeJ. The red lines show the median fluorescence intensities. The differences in foci intensity between strains and conditions were not significant (ns). Representative data from one of four biological replicates are shown.

Figure S24. GerAA(V362L) is strongly dominant-negative. (A) Representative immunoblot monitoring GerAA levels in lysates from purified spores of the indicated strains. Spores harboring gerAA(WT) LOW contains a point mutation in the ribosome binding site, reducing the levels of wild-type GerAA by approximately 8 -fold. Spore lysates with GerAA(WT) were diluted $2-, 4$-, and 8 -fold with spore lysates from a \triangle gerAA strain to maintain equivalent amounts of total protein loaded. SpoVAD controls for loading. (B) Bar graph showing total DPA in purified spores from the indicated strains. (C,D) Purified spores from the indicated strains were mixed with 1 mM L-alanine and the optical density (C) and DPA release (D) were monitored over time. Spores with equivalent levels of GerAA(WT) and the channel-blocking mutant GerAA(V362L) were severely impaired in germination. DPA release and the drop in optical density in response to L-alanine in the merodiploid spores were more impaired than spores with the gerAA allele that produced >8-fold lower levels of wild-type GerAA. Representative data from one of two biological replicates are shown for (A) and one of three biological replicates for (B-D).

Figure S25. Cysteine-substituted GerAA proteins form disulfide species consistent with dimer and pentamer. (A) Top-down and side view of the channel in the GerAA pentamer model. Only TM3 from each GerAA protomer is shown. The two residues (V359, dark yellow and G361, red) that were changed to cysteine are highlighted. (B) Representative immunoblot from lysates of spores containing GerAA(WT) or GerAA(V359C, G361C). Lysates were split and incubated with B-mercaptoethanol (BME) or tributyl phosphine (TBP). GerAA(V359C G361C) maintained disulfide species (red asterisks) with sizes of dimer and pentamer in the presence of BME but these species were largely lost in the presence of TBP. SleB controls for loading. Representative data from one of two biological replicates are shown.

Figure S26. Spore germination in a mutant lacking seven putative ion transporters is similar to wild-type. Comparison of sporulation and germination in wild-type and a septuple mutant ($\Delta 7$) lacking seven putative ion transporters $\Delta k h t U \Delta c p a A \Delta n h a K$
 functions in germination in response to inosine in B. cereus (33). NhaK (TC 2.A.36), ChaA (TC 2.A.19), YugO (TC 1.A.1.13.4), CorA (TC 1.A.35) are members of distinct transporter families and YugS is a putative ion transporter (IPR044751). All seven proteins are expressed during sporulation (61) and/or are present in the spore inner membrane proteome (62). (A) Phase-contrast images of sporulated cultures of the indicated strains. The sporulation efficiencies are shown in the bottom right corner. Scale bar is $2 \mu \mathrm{~m}$. (B) Images of the Histodenz-purified spores. (C) Levels of total $\mathrm{K}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$, and DPA in the wild-type and $\Delta 7$ purified spores. (D-E) Drop in optical densities over time after exposing the spores to L-alanine (D) or a mixture of L-asparagine, D-glucose, D-fructose, and K+ (AGFK) (E). (F-I) After mixing the spores with 10 mM L-alanine (L-ala), germination exudates were collected at the indicated times and analyzed for DPA using $\mathrm{TbCl}_{3}(\mathbf{F}), \mathrm{K}^{+}(\mathrm{G}), \mathrm{Mg}^{2+}(\mathrm{H})$, and $\mathrm{Ca}^{2+}(\mathrm{I})$, using ICP-MS. Representative data from one of three biological replicates are shown in each panel.

Table S1.

Strains	Genotype	Source	Figures
BDR2414	Bacillus subtilis 168 (trpC2)	(39)	$\begin{aligned} & \hline \text { S4, S12, S13, } \\ & \text { S15, S16, S17, } \\ & \text { S21, S22, S26 } \end{aligned}$
BDR4496	$\Delta k h t U:: / o x 72$ scpaA::Iox72 $\Delta n h a K:: I o x 72$ syugO::Iox72 $\Delta c h a A:: / o x 72$ syugS::Iox72 Δ corA::Iox72	This study	S26
BAM841	gerA+ Δ gerBB::Iox72 4 gerKB::Iox72 $4 y f k T:: 10 x 72$ \yndE::Iox72	(58)	1, S3
BAM860			S3
BJA177a	$\Delta g e r A::$ cat $\Delta g e r B B:: / 0 x 72$ $\Delta g e r K B:: / o x 72 \Delta y f k T:: / o x 72 \Delta y n d E:: / o x 72$, ycgO::gerAA(P326S)-gerAB-gerAC (spec)	(9)	
BJA186a	yhdG:: erm sspE-lacZ Ω (cat)	This study	
BJA229	yhdG::PgerA-gerAA(P326S)(tet)	This study	S11
BJA230	yhdG::PgerA-gerAA(P326S)(tet) sspE-lacZ Ω (cat)	This study	
BJA276	yhdG::PgerA-gerAA(tet)	This study	2, S11
BJA277	yhdG::PgerA-gerAA(tet) sspE-lacZ Ω (cat)	This study	
BJA498	yhdG::PgerA-gerAA(L348A)(tet)	This study	S11
BJA500	yhdG::PgerA-gerAA(T355M)(tet)	This study	S11
BJA501	yhdG::PgerA-gerAA(V362A)(tet)	This study	2, S11
BJA508	yhdG::PgerA-gerAA(P326S)(tet) Δ sleB:: erm	This study	S11
BJA509	yhdG:: PgerA-gerAA(tet) Δ sleB::erm	This study	S11
BJA510	yhdG::PgerA-gerAA(L348A)(tet) Δ sleB:: erm	This study	S11
BJA512	yhdG::PgerA-gerAA(T355M)(tet) Δ sleB:: erm	This study	S11
BJA513	yhdG::PgerA-gerAA(V362A)(tet) Δ sleB:: erm	This study	S11
BLA219	Δ gerA::/lox72 Δ gerBB:::/ox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72$ $\Delta y n d E:: / l o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(tet)	(10)	2, S12, S13, S24
BLA321	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / l o x 72$ lacA::PgerA-gerAC-his6(phleo) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA(tet)	(10)	2, S13
BLA420	Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~ \Delta g e r A:: / l o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec)yhdG::PhygerAA(C100S)(erm)	This study	3
BLA450	lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(C100S, V359C, G361C)(erm)	This study	3
BLA451	Δ gerBB::/ox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~ \Delta g e r A:: / l o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(C100S, V359C)(erm)	This study	3
BLA452	$\Delta g e r B B:: I o x 72$ $\Delta g e r K B:: / o x 72$ $\Delta y f k T:: I o x 72 ~ \Delta y n d E:: / o x 72 \Delta g e r A:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(C100S, G361C)(erm)	This study	3
BLA453	Δ gerBB::Iox72 Δ gerKB::/lox72 $\Delta y f k T:: I o x 72 ~ \Delta y n d E:: / o x 72 ~ \Delta g e r A:: / l o x 72 ~$ yhdG::Phy-gerAA(C100S, V359C, G361C)(erm)	This study	3
BLA438	Δ gerBB::Iox72 Δ gerKB::/lox72 $\Delta y f k T:: I o x 72 ~ \Delta y n d E:: / o x 72 \Delta g e r A:: / l o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(C100S, V359C, G361C)(tet) Δ cotE:::phleo Δ gerE::kan	This study	3, S25
BLA463	Δ gerBB::Iox72 Δ gerKB::/lox72 $\Delta y f k T:: I o x 72 \Delta y n d E:: / l o x 72 \Delta g e r A:: / 0 x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(C100S)(tet) Δ cotE::phleo Δ gerE::kan	This study	3, S25
BYG1051	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-his6(Cm) ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAAgfp(phleo)	This study	3, S22
BYG1104	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::Kan	This study	S12, S13

BYG1116	Δ gerA::/lox72 Δ gerBB:::/ox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72$ $\Delta y n d E:: / 0 x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(Q366L)(tet)	This study	S12, S13
BYG1117	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72 ~ \Delta y n d E:: / o x 72$ ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAA-gfp(phleo)	This study	S22
BYG1118	Δ gerA::/lox72 Δ gerBB:::/ox72 Δ gerKB::/lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-His6(Cm) yhdG::Pxyl-gerAA-gfp(phleo)	This study	S22
BYG1126	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / l o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(V362L)(tet)	This study	2, S12, S13
BYG1127	$\Delta g e r A:: / l o x 72$ Δ gerBB::/lox72 $\Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / l o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(Q354L)(tet)	This study	S12, S13
BYG1128	पgerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA-gfp(tet)	This study	2, S13
BYG1129	lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerAgerAA(V362A)(tet)	This study	2
BYG1145	$\Delta g e r A:: / o x 72 \Delta g e r B B:: / o x 72$ $\Delta g e r K B:: / o x 72 \Delta y f k T:: / o x 72 \Delta y n d E:: / o x 72$ yhdG::Pxyl-gerAA-gfp(phleo)	This study	3, S22
BYG1146	पgerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / l o x 72 ~$ lacA:::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(L348A)(erm)	This study	S16
BYG1147	$\Delta g e r A:: / 10 x 72$ Δ gerBB::/lox72 $\Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(T355M) (erm)	This study	S16
BYG1148	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72 ~ \Delta y n d E:: / o x 72$ ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAA-gfp(phleo)	This study	3
BYG1149	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-His6(Cm) yhdG::Pxyl-gerAA-gfp(phleo)	This study	3
BYG1161	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-His6(Cm) ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAAProC(phleo) lacA::Pxyl-gerAA-FLAG(erm)	This study	3
BYG1164	पgerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA(V362L)-gfp(tet)	This study	2, S13
BYG1165	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / l o x 72 ~$ lacA::PgerA-gerAC(erm) ycgO $\because:$ PgerA-gerAB(spec) yhdG::PgerA-gerAA(Q354L)-gfp(tet)	This study	S13
BYG1166	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / l o x 72 ~ \Delta y n d E:: / l o x 72 ~$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA(Q366L)-gfp(tet)	This study	S13
BYG1179	$\Delta g e r A:: / l o x 72$ Δ gerBB::/lox72 $\Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-His6(cat) ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAAm Ypet(phleo)	This study	S23
BYG1188	पgerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yvbJ::PgerAgerAA(V362L)(cat) yhdG::kan	This study	S24
BYG1196	$\Delta g e r A:: / l o x 72$ Δ gerBB::/lox72 $\Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yvbJJ::PgerAgerAA(V362L)(cat) yhdG::PgerA-gerAA(tet)	This study	S24
BYG1198	$\Delta g e r A:: / l o x 72$ $\Delta g e r B B:: / o x 72 \Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA:::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::Phy-gerAA(V362A)-gfp(erm)	This study	S21
BYG1211	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ yvbJ::Phy-gerAC-His6(cat) ycgO::Phy-gerAB(spec) yhdG::PxylgerAA(phleo) lacA::Pxyl-gerAA-FLAG(erm)	This study	3
BYG1212	Δ gerA::/ox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yhdG::Pxyl-gerAA-ProC(phleo) lacA::Pxyl-gerAA-FLAG(erm)	This study	3

BYG1232	yhdG::PgerA-gerAA(L358A)(tet)	This study	S11
BYG1234	yhdG::PgerA-gerAA(L358A)(tet) Δ sleB::Iox72	This study	S11
BYG1291	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::PgerA-gerAC(erm) ycgO::PgerA-gerAB(spec) yhdG::PgerA-(weak RBS)-gerAA(tet)	This study	S24
BYG1301	Δ gerA:::/ox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(G25A)(spec) yhdG::Phy-gerAA(erm)	This study	3, S18
BYG1304	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(V362L)(erm) yvbJ::Pveg-BFP	This study	S19
BYG1305	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(G25A)(spec) yhdG::Phy-gerAA(erm) yvbJ::Pveg-BFP	This study	S20
BYG1306	$\Delta g e r A::: / 0 x 72$ Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(erm) yvbJ::Pveg-gfp	This study	S19, S20
BYG1325	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::Phy-gerAA-FLAG(erm)	This study	S21
BYG1326	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::Phy-gerAA(V362A)-FLAG(erm)	This study	S21
BYG1327	Δ gerA:::/ox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-His6(cat) ycgO::Phy-gerAB(spec) yhdG::Pxyl-gerAA(V362L)-mYpet(phleo)	This study	S19
BYG1341	$\Delta g e r A:: / 10 x 72$ Δ gerBB::/lox72 $\Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Phy-gerAC-His6(cat) ycgO::Phy-gerAB(G25A)(spec) yhdG::Pxyl-gerAA-mYpet(phleo)	This study	S20
BYG144	$\Delta s p o V A::$ tet yhdG::PsspB-spoVA1(Bc) (spec)	This study	1, S2, S3, S4
BYG147	\spoVA::tet ycgO::PsspB-spoVA2(Bc) (kan)	This study	1, S2, S3, S4
BYG166	$\Delta s p o V A::$ tet yhdG::PsspB-spoVA (spec)	This study	1, S2, S3, S4
BYG277	\spoVA::tet ycgO::PsspB-spoVA(Cdif) (kan)	This study	1, S2, S3, S4
BYG383	Δ gerAB::/ox72 Δ gerBB::/lox72 Δ gerKB::Iox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yhdG::PsspB-gerUA-gerUC-gerUB-gerVB(Bm) (spec)	This study	1, S3
BYG452	\gerAB::Iox72 4 spoVA::tet	(6)	S4
BYG73	\triangle spoVA: :tet	(6)	S4
BYG779	Δ gerA:::/ox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::PgerA-gerAC-His6(phleo) ycgO::PgerA-gerAB(spec) yhdG::kan	This study	2, S13
BYG783	$\Delta \mathrm{gerA}$::cat Δ spoVA::tet ycgO::PsspB-spoVA(C. dif) (kan)	This study	S4
BYG789	Δ gerA::cat Δ spoVA: $:$ tet yhdG::PsspB-spoVA (spec)	This study	S4
BYG790	Δ gerA::cat Δ spoVA: $:$ tet yhdG::PsspB-spoVA1(Bc) (spec)	This study	S4
BYG793	$\Delta \mathrm{gerA}$:: cat	This study	S4
BYG797	$\Delta \mathrm{gerA}$::cat Δ spoVA::tet ycgO::PsspB-spoVA2(Bc) (kan)	This study	S4
BYG818	$\Delta g e r A::: / 0 x 72$ Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC-His6(phleo) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA(V362L)(tet)	This study	2, S13
BYG819	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC-His6(phleo) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA(Q354L)(tet)	This study	S13
BYG825	Δ gerA:::lox72 Δ gerBB::/lox72 Δ gerKB::lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::PgerA-gerAC-His6(phleo) ycgO::PgerA-gerAB(spec) yhdG::PgerA-gerAA(Q366L)(tet)	This study	S13
BYG838	Δ gerA::Iox72 Δ gerBB::/lox72 4 gerKB::/lox72 पyfkT::/lox72 $4 y n d E:: / 0 x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PspankgerAA(erm)	This study	S15
BYG839	lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PspankgerAA(V362A)(erm)	This study	S15

BYG841	पgerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / l o x 72 ~$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(erm)	This study	$\begin{aligned} & \text { 3, S16, S17, S18, } \\ & \text { S21 } \end{aligned}$
BYG842	lacA:::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(V362A)(erm)	This study	3, S16, S17, S21
BYG843	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72$ $\Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(V362L)(erm)	This study	3, S18
BYG849	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yhdG::Phy-gerAA(V362A)(erm)	This study	3, S17
BYG862	Δ gerA::/lox72 Δ gerBB::/lox72 Δ gerKB::/lox72 $\Delta y f k T:: / 0 x 72 ~ \Delta y n d E:: / o x 72$ ycgO::Pveg-gerAB(spec) yhdG ::Phy-gerAA(V362A)(erm)	This study	3
BYG863	Δ gerA:::/ox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) yhdG::Phy-gerAA(V362A)(erm)	This study	3
BYG891	$\Delta g e r A:: / l o x 72$ Δ gerBB::/ox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::PhygerAA(L358A)(erm)	This study	S16
BYG893	$\Delta g e r A:: / l o x 72$ $\Delta g e r B B:: / o x 72 \Delta g e r K B:: / o x 72$ $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::Phy-gerAA-ProC(erm)	This study	S21
BYG894	$\Delta g e r A:: / l o x 72$ $\Delta g e r B B:: / o x 72$ $\Delta g e r K B:: / o x 72 ~ \Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::Phy-gerAA-gfp(erm)	This study	S21
BYG900	Δ gerA:::/ox72 Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72 ~$ lacA::Pveg-gerAC-His6(phleo) ycgO::Pveg-gerAB(spec) yhdG::Phy-gerAA(V362A)-ProC(erm)	This study	S21
BYG1466	$\Delta g e r A:: / 10 x 72$ Δ gerBB::/lox72 Δ gerKB::/ox72 $\Delta y f k T:: / o x 72 ~ \Delta y n d E:: / o x 72$ yvbJ::Pxyl-gerAC(cat) ycgO::Pxyl-gerAB(spec) yhdG::Pspank-gerAAmYpet(erm)	This study	S23
B. cereus			
569 UM20.1	wild-type 10876 (trp-1 Str${ }^{\text {R }}$)	Anne Moir	2, S14
BDR4445	gerQ $2 p$ FR69-gerQA(I363A)(erm)	This study	2, S14

Table S1. Strains used in this study.

Table S2.

Plasmid	Genotype	Source
pDR183	lacA::erm (amp)	laboratory stock
pDR244	cre (spec) (amp)	laboratory stock
pWX318	$m Y p e t$ (cat) (amp)	laboratory stock
pER083	sacA::Pveg-BFP(phleo) (amp)	laboratory stock
pER117	sacA::Pveg-gfp(phleo) (amp)	laboratory stock
pCB006	yvbJ::cat (amp)	laboratory stock
pCB033	yhdG::spec (amp)	laboratory stock
pCB057	yhdG::Pspank (erm) (amp)	laboratory stock
pCB058	yhdG::Pspank (spec) (amp)	laboratory stock
pCB096	ycgO::Pxyl (spec) (amp)	laboratory stock
pCB100	yhdG::Phy (erm) (amp)	laboratory stock
pCB109	yhdG::Pxyl (phleo) (amp)	laboratory stock
pCB124	yvbJ::Phypespank (hy) (cat) (amp)	laboratory stock
pCB130	yvbJJ::Pxyl (Cm) (amp)	laboratory stock
pLA13	ycgO::PgerA-gerAB(spec) (amp)	(10)
pLA29	ycgO::PgerA-gerAA (spec) (amp)	(10)
pLA39	yhdG::PgerA-gerAA(tet) (amp)	(10)
pLA131	lacA::PgerA-gerAC-his6(phleo) (amp)	(10)
pLA155	ycgO::Pveg-gerAB(spec)(amp)	(10)
pLA137	yhdG::PgerA-gerAA(C100S)(tet) (amp)	(10)
pLA178	yhdG::Phy-gerAA(C100S)(erm) (amp)	This study
pLA191	yhdG::PgerA-(RBSgerAB)-gerAA(C100S, V359C, G361C)(tet) (amp)	This study
pLA201	yhdG::Phy-gerAA(C100S, V359C, G361C)(erm) (amp)	This study
pLA202	yhdG::Phy-gerAA(C100S, V359C)(erm) (amp)	This study
pLA203	yhdG::Phy-gerAA(C100S, G361C)(erm) (amp)	This study
pFR69	pMiniMAD-Pveg-mCherry-gerQA(I363A)(erm) (amp)	This study
pJA047	yhdG::PgerA-gerAA(P326S) (tet)	This study
pJA060	yhdG::PgerA (spec)	This study
pYG63	yhdG::PsspB-spoVA(spec) (amp)	This study
pYG53	yhdG::PsspB-spoVA1(Bc)(spec) (amp)	This study
pYG56	ycgO:: PsspB-spoVA2(Bc)(kan) (amp)	This study
pYG95	ycgO:: PsspB-spoVA(Cdif)(kan) (amp)	This study
pYG129	yhdG::PsspB-gerUA-gerUC-gerUB-gerVB(spec) (amp)	This study
pYG275	yhdG::PgerA-gerAA(V362A)(tet) (amp)	This study
pYG243	yhdG::PgerA-gerAA(V362L)(tet) (amp)	This study
pYG244	yhdG::PgerA-gerAA(Q366L)(tet) (amp)	This study
pYG245	yhdG::PgerA-gerAA(Q354L)(tet) (amp)	This study
pYG248	yhdG::PgerA-gerAA(L358A)(tet) (amp)	This study
pYG262	yhdG::PgerA-gerAA-gfp(tet) (amp)	This study
pYG253	yhdG::PgerA-gerAA(V362L)-gfp(tet) (amp)	This study
pYG254	yhdG::PgerA-gerAA(Q366L)-gfp(tet) (amp)	This study
pYG255	yhdG::PgerA-gerAA(Q354L)-gfp(tet) (amp)	This study
pYG263	yhdG::Pspank-gerAA(erm) (amp)	This study
pYG264	yhdG::Pspank-gerAA(V362A)(erm) (amp)	This study
pYG265	yhdG::Phy-gerAA(erm) (amp)	This study
pYG266	yhdG::Phy-gerAA(V362A)(erm) (amp)	This study
pYG268	yhdG::Phy-gerAA(V362L)(erm) (amp)	This study
pYG304	ycgO:::Phy-gerAB(spec) (amp)	This study
pYG305	yvbJ::Phy-gerAC-His6(cat) (amp)	This study
pYG316	yhdG::Pxyl-gerAA-proC(phleo) (amp)	This study
pYG383	lacA::Pxyl-gerAA-FLAG(erm) (amp)	This study
pYG372	yhdG::Pxyl-gerAA(phleo) (amp)	This study
pYG313	yhdG:: Pxyl-gerAA-gfp(phleo) (amp)	This study
pYG359	yhdG::Pxyl-gerAA-mYpet(phleo) (amp)	This study

pYG344	yhdG::Phy-gerAA(L348A)(erm) (amp)	This study
pYG345	yhdG:: Phy-gerAA(T355M)(erm) (amp)	This study
pYG282	yhdG::Phy-gerAA(L358A)(erm) (amp)	This study
pYG365	ycgO::Pveg-gerAB(G25A)(spec) (amp)	This study
pYG278	yhdG::Phy-gerAA-proC(erm) (amp)	This study
pYG298	yhdG::Phy-gerAA(V362A)-proC(erm) (amp)	This study
pYG427	yhdG::Phy-gerAA-FLAG(erm) (amp)	This study
pYG428	yhdG::Phy-gerAA(V362A)-FLAG(erm) (amp)	This study
pYG276	yhdG::Phy-gerAA-gfp(erm) (amp)	This study
pYG366	yhdG::Phy-gerAA(V362A)-gfp(erm) (amp)	This study
pYG363	yvbJ::PgerA-gerAA(V362L)(cat) (amp)	This study
pYG409	yhdG::PgerA-(weak RBS)-gerAA(tet) (amp)	This study
pYG422	yvbJ::Pveg-BFP(kan) (amp)	This study
pYG423	yvbJ:::Pveg-gfp(kan) (amp)	This study
pYG440	yhdG::Pxyl-gerAA(V362L)-gfp(phleo) (amp)	This study
pYG441	yhdG::Pxyl-gerAA(V362L)-mYpet(phleo) (amp)	This study
pYG442	ycgO:: Phy-gerAB(G25A)(spec) (amp)	This study
pYG460	yhdG::Pspank-gerAA-mYpet(erm) (amp)	This study
pYG469	ycgO::Pxyl-gerAB(spec) (amp)	This study
pYG470	yvbJ:: Pxyl-gerAC(cat) (amp)	This study

Table S2. Plasmids used in this study.

Table S3.

oligos	sequence	use
oCB59	GCGACTAGTaagatggtgatcaatgatggaacaaacgatttatattaaaatgcge	pYG53
oLA112	ggcGGATCCagccgtcaggcgtattagcc	pYG363
oLA197	aaatacaatgcttGCGgccggacttttaaca	pYG365, pYG442
oLA41	GCCGAATTCgctgttcaaatgatctaatgagctgttc	pYG363
oYG110	ctggcggaagcggaggatccAAGGGAGAAGAGTTGTTTACGGGT	pYG262
oYG117	caagcgGAATTCGACTAGCTTAGCCTAAACGGCTAAG	pYG53, pYG56, pYG63, pYG95
oYG118	ctggACTAGTTTTTTATTTAGTATGGTTGGGTTAACT	pYG53, pYG56, pYG63, pYG95
oYG119	ctggCTCGAGCCTTCCATACACAATATCTACTCTAAGTG	pYG53
oYG120	ctggCTCGAGccctgcttatgtatcttcAACATCATAAC	pYG56
oYG122	cagcgACTAGTacaTAAGGAGGaactactATGACTGTAATTACGAAACTAAAGCAAAC	pYG56
oYG148	gcgACTAGTaagatggtgatcaatgATGGAACGACGAATATTTATCCGGCT	pYG63
oYG149	ctggCTCGAGTTATGAATTGGTAGGCTGCCTTAAG	pYG63
OYG255	cagcgACTAGTacaTAAGGAGGaactactatggataaaaattataaaaaatatgtagacc	pYG95
oYG256	ctggCTCGAGttatggttttgcttttggagtaaatac	pYG95
OYG259	CTCGAGatGCTAGCatGGATCCCCCT	pYG129
oYG260	TGAGGTCACCTCTTATCCACTAGTTTTTTATTTAGTATGGTTGGGTTAACTGGA	pYG129
oYG292	GAATTCGACATCAAGAGCGGGAAGGGAGATTTG	pYG422, pYG423
OYG293	CTCGAGatGCTAGCatGGATCCcagc	pYG422, pYG423
OYG324	ACTAGTGGATAAGAGGTGACCTCAatgccttcgttttttaaagatcgaaaatc	pYG129
oYG341	GATCCatGCTAGCatCTCGAGgttatcctctctgtttctttctgtttttc	pYG129
OYG352	ggatcctccgcttccgccagagcctccAGTTTCAGTGGAGTCTGTTTTTG	pYG262, pYG359
oYG534	CTACTTATCATCATCATCCTTATAGTCggatcctccgcttccgccagagc	pYG383
oYG569	acgatcggcctcgttgggggcCtagtcatcggacaggctgctg	pYG243, pYG253, pYG268, pYG440, pYG441
oYG570	cagcagcctgtccgatgactaGgcccccaacgaggccgatcgt	$\begin{aligned} & \text { pYG243, pYG253, pYG268, } \\ & \text { pYG440, pYG441 } \end{aligned}$
oYG571	tgggggcgtagtcatcggacTggctgctgtagaagcgaatc	pYG244, pYG254
OYG572	gattcgcttctacagcagccAgtccgatgactacgccccca	pYG244, pYG254
oYG573	gactccccaatccgctcggacTgacgatcggcctcgttgg	pYG245, pYG255
oYG574	ccaacgaggccgatcgtcAgtccgagcggattggggagtc	pYG245, pYG255
oYG579	gctcggacagacgatcggcGCcgttgggggcgtagtcatcgga	pYG248, pYG282
OYG580	tccgatgactacgcccccaacgGCgccgatcgtctgtccgagc	pYG248, pYG282
OYG589	GGATCCTTCTGCTCCCTCGCTCAGTAC	pYG262
oYG590	AGCGAGGGAGCAGAAGGATCCTTaggtgctACTAGTAGAACCACCGCCT	pYG262
oYG596	acgatcggcctcgttgggggcGCagtcatcggacaggctgctg	$\begin{aligned} & \text { oYG275, pYG264, pYG266, } \\ & \text { pYG298, pYG366, pYG428 } \end{aligned}$

oYG597	cagcagcctgtccgatgactGCgcccccaacgaggccgatcgt	oYG275, pYG264, pYG266, pYG298, pYG366, pYG428
oYG600	GTGAGCGGATAACAATTAAGCTTaaccaaaagaggtgaataatccaatggaac	pYG263, pYG265, pYG276
oYG601	GCTAGCatCTGCAGttACTAGTagccgtcaggcgtattagccttagtg	pYG263, pYG265
oYG614	aGCTAGCatCTGCAGttACTAGTTTaggtgctACTAGTAGAACCACCGCCT	pYG276
oYG617	ATGAGCCGCGGATCTACTTGGTCTTCACTAGTggatcctccgcttccgccagagc	pYG278
oYG618	GCgaGCTAGCatCTGCAGttATCACTTCCCATCAATGAGCCGCGGATCTACTTGGTC	pYG278
oYG619	GtAATTGTGAGCGGATAACAATTAaaccaaaagaggtgaataatccaatggaac	pYG278, pYG427
oYG650	GtAATTGTGAGCGGATAACAATTAaaccaaaagaggtgaataatccaaatgagc	pYG304
oYG651	TGCgaGCTAGCatCTGCAGttAtcattttgttgtaatcetcctcttgagagc	pYG304
oYG652	GtAATTGTGAGCGGATAACAATTAgctctcaagaggaggattacaacaaaatg	pYG305
oYG653	TGCgaGCTAGCatCTGCAGttAtcaatggtgatggtgatggtggctgcctttgtttgc	pYG305
oYG658	cataacctgaagAATTgGATCCatCTTaggtgctACTAGTAGAACCACCGCCT	pYG313
oYG659	gaaataaaatgcatctgtatttgaatgAaaccaaaagaggtgaataatccaatggaac	pYG313, pYG316, pYG372
oYG667	taacctgaagAATTgGATCCatCTCACTTCCCATCAATGAGCCGCGGATCTACTTGGTC	pYG316
oYG684	ctcgagtagtcgacatgaattcatGAGCT	pYG383
oYG685	CatgaattcatgtcgactactcgagCGTGCCATGTCACTATTGCTTCAGA	pYG383
oYG699	tgctaagggaagccggactgcgaGCccccaatccgctcggacaga	pYG344
oYG700	tctgtccgagcggattggggGCtcgcagtccggcttcccttagca	pYG344
oYG701	actccccaatccgctcggacagaTgatcggcctcgttgggggcgt	pYG345
oYG702	acgcccccaacgaggccgatcAtctgtccgagcggattggggagt	pYG345
oYG721	GACTATAAGGATGATGATGATAAGTAGAACGAAATGATACACCAATCAGTGCA	pYG383
oYG737	GGATCcAATTcttcaggttatgaccatctgtgccag	pYG359
oYG738	tctggcggaagcggaggatccTCAAAAGGCGAAGAGCTGTTTACCGGAG	pYG359
oYG739	gtcataacctgaagAATTgGATCCTTACTTGTAAAGTTCATTCATCCCTTCTGT	pYG359
oYG745	taacctgaagAATTgGATCCatCttaagtttcagtggagtctgtttttggct	pYG372
oYG788	ctactaaggttttACTAGTaaccaaaaTaggtgaataatccaatggaaca	pYG409
oYG789	tgttccattggattattcacctAttttggttACTAGTaaaaccttagtag	pYG409
oYG812	TCCCGCTCTTGATGTCGAATTCtCttgaaaacctgcataggagagctatg	pYG422, pYG423
oYG813	tgGGATCCatGCTAGCatCTCGAGGATCCTTAATTCAGTTTGTGACCCAG	pYG422
oYG814	tgGGATCCatGCTAGCatCTCGAGccttatttgtatagttcatccatgcca	pYG423
oYG821	GCgaGCTAGCatCTGCAGttACTACTTATCATCATCATCCTTATAGTCgga	pYG427
oYG832	TGCgaGCTAGCatCTGCAGttATTACTTGTAAAGTTCATTCATCCCTTCTGT	pYG460
oYG868	GTGGAATTGTGAGCGGATAACAATTAaaccaaaagaggtgaataatccaatggaac	pYG460
oYG883	gaaataaaatgcatctgtatttgaatgAgctctcaagaggaggattacaacaaaatg	pYG470
oYG885	gaaataaaatgcatctgtatttgaatgAaaccaaaagaggtgaataatccaaatgagc	pYG469
oYG886	CCATTCGCCAGGGGGATCCatCtcattttgttgtaatcctcctcttgagagc	pYG469
oYG887	CTATTGCCGTATGGGATCCatCCTATTTGTTTGCGCCTTTCGTTCCGAAG	pYG470

oJM28	TTCTGCTCCCTCGCTCAG	kan/phleo cassette (isothermal assembly)
oJM29	CAGGGAGCACTGGTCAAC	kan/phleo cassette (isothermal assembly)
oLA323	CGATTCTCAACGGCAATTCAGCTGTGTTTATCAACG	pLA137, pLA178
oLA384	TCGGACAGACGATCGGCCTCTGTGGGTGTGTAGTCATCGGACAGGCTGC	pLA191, pLA201
oLA408	GACGATCGGCCTCTGTGGGGGCGTAGTCATC	pLA202
oLA409	CGATCGGCCTCGTTGGGTGTGTAGTCATCGGACAGG	pLA203
oLA412	GACAGAGAGCGTTACATGGAGCTGG	cotE::phleo (isothermal assembly)
oLA413	TCCCGGGCATTGACATTTCCG	cotE::phleo (isothermal assembly)
oLA414	CTGAGCGAGGGAGCAGAAGCCATTCCGGCATGCCTCCTTGTTC	cotE::phleo (isothermal assembly)
oLA415	GTTGACCAGTGCTCCCTGTAAAAAAGGGACTAGGGGAGACAGTACCC	cotE::phleo (isothermal assembly)
oLA416	GGCGCATGTTCAATGGTTATAAACGG	gerE::kan (isothermal assembly)
oLA417	GGTTTTAACAATCTCGTCTGCTGTTTTGTCG	gerE::kan (isothermal assembly)
oLA418	CTGAGCGAGGGAGCAGAATGCAAGTATTGTAACCCTCCTTGCTAAGGTGAG	gerE::kan (isothermal assembly)
oLA419	GTTGACCAGTGCTCCCTGTAATCCTTGCCGGTATTCCTTCTTTTGGAAGG	gerE::kan (isothermal assembly)
oFR399	cgccaagcttgcatgcctgcaggcctttctttagaaccaaaagaaag	pFR69
oFR400	taccgatgcttgtccaatcacagcaccacctactataccgacagttaa	pFR69
oFR401	actgtcggtatagtaggtggtgctgtgattggacaagcatcggtagaa	pFR69
oFR402	atggacgaattatacaaataagtcccagtgcctcttttataccacg	pFR69
OJA105	ggcgaacagggaaaacgtgccgttctctccgatatttgaagccctgctgatg	pJA047
OJA106	catcagcagggcttcaaatatcggagagaacggcacgttttccctgttcgcc	pJA047
oJA117	aaatctcgctctgatcagac	Sanger sequencing oligo for mutagenized gerAA
OJA148	tgcaaatacaatgcttgggg	Sanger sequencing oligo for mutagenized gerAA
OJA176	ggactggtttttgctcagac	Amplification of yhdG::gerAA locus for Sanger sequencing
oJA177	gtggctgttaatcggcttgg	Amplification of yhdG::gerAA locus for Sanger sequencing
OJA178	ACAGGAAAAGATaacctctactaaggttttACTAG	Amplification of gerAA using error prone PCR for library creation using pJA060
oJA179	GCGAGGGAGCAGAAGGATCC	Amplification of gerAA using error prone PCR for library creation using pJA060

Table S3. Oligonucleotides used in this study.

Data S1.

PDB of AlphaFold2 model of the GerAA/GerAB/GerAC trimer.

Data S2.

PDB of AlphaFold2 model of the GerAA pentamer.

Data S3.

PDB of AlphaFold2 model of the GerAC pentamer.

Data S4.

PDB of AlphaFold2 model of a dimer the GerAA/GerAB/GerAC trimer.

Data S5.

PDB of model of the GerAA/GerAB/GerAC pentamer manually built from the AlphaFold2 model of the dimer of trimers.

References and Notes

1. S. André, T. Vallaeys, S. Planchon, Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 168, 379-387 (2017). doi:10.1016/j.resmic.2016.10.003 Medline
2. M. Mallozzi, V. K. Viswanathan, G. Vedantam, Spore-forming Bacilli and Clostridia in human disease. Future Microbiol. 5, 1109-1123 (2010). doi:10.2217/fmb.10.60 Medline
3. P. Setlow, Spore resistance properties. Microbiol. Spectr. 2, 2.5.11 (2014). doi:10.1128/microbiolspec.TBS-0003-2012 Medline
4. A. Moir, G. Cooper, Spore germination. Microbiol. Spectr. 3, microbiolspec.TBS-0014-2012 (2015). doi:10.1128/microbiolspec.TBS-0014-2012 Medline
5. P. Setlow, S. Wang, Y. Q. Li, Germination of spores of the orders Bacillales and Clostridiales. Апnи. Rev. Microbiol. 71, 459-477 (2017). doi:10.1146/annurev-micro-090816-093558 Medline
6. Y. Gao, R. D. C. Barajas-Ornelas, J. D. Amon, F. H. Ramírez-Guadiana, A. Alon, K. P. Brock, D. S. Marks, A. C. Kruse, D. Z. Rudner, The SpoVA membrane complex is required for dipicolinic acid import during sporulation and export during germination. Genes Dev. 36, 634-646 (2022). doi:10.1101/gad.349488.122 Medline
7. V. R. Vepachedu, P. Setlow, Role of SpoVA proteins in release of dipicolinic acid during germination of Bacillus subtilis spores triggered by dodecylamine or lysozyme. J. Bacteriol. 189, 1565-1572 (2007). doi:10.1128/JB.01613-06 Medline
8. D. Paredes-Sabja, P. Setlow, M. R. Sarker, Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 19, 85-94 (2011). doi:10.1016/j.tim.2010.10.004 Medline
9. J. D. Amon, L. Artzi, D. Z. Rudner, Genetic evidence for signal transduction within the Bacillus subtilis GerA Germinant receptor. J. Bacteriol. 204, e0047021 (2022). doi:10.1128/jb.00470-21 Medline
10. L. Artzi, A. Alon, K. P. Brock, A. G. Green, A. Tam, F. H. Ramírez-Guadiana, D. Marks, A. Kruse, D. Z. Rudner, Dormant spores sense amino acids through the B subunits of their germination receptors. Nat. Commun. 12, 6842 (2021). doi:10.1038/s41467-021-27235-2 Medline
11. J. Trowsdale, D. A. Smith, Isolation, characterization, and mapping of Bacillus subtilis 168 germination mutants. J. Bacteriol. 123, 83-95 (1975). doi:10.1128/jb.123.1.83-95.1975 Medline
12. M. B. Francis, C. A. Allen, R. Shrestha, J. A. Sorg, Bile acid recognition by the Clostridium difficile germinant receptor, CspC , is important for establishing infection. PLOS Pathog. 9, e1003356 (2013). doi:10.1371/journal.ppat. 1003356 Medline
13. G. Christie, C. R. Lowe, Role of chromosomal and plasmid-borne receptor homologues in the response of Bacillus megaterium QM B1551 spores to germinants. J. Bacteriol. 189, 4375-4383 (2007). doi:10.1128/JB.00110-07 Medline
14. Y. Chen, B. Barat, W. K. Ray, R. F. Helm, S. B. Melville, D. L. Popham, Membrane proteomes and ion transporters in Bacillus anthracis and Bacillus subtilis dormant and
germinating spores. J. Bacteriol. 201, e0062-18 (2019). doi:10.1128/JB.00662-18 Medline
15. B. M. Swerdlow, B. Setlow, P. Setlow, Levels of H+ and other monovalent cations in dormant and germinating spores of Bacillus megaterium. J. Bacteriol. 148, $20-29$ (1981). doi:10.1128/jb.148.1.20-29.1981 Medline
16. R. B. Bass, P. Strop, M. Barclay, D. C. Rees, Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582-1587 (2002). doi:10.1126/science. 1077945 Medline
17. R. Evans et al., Protein complex prediction with AlphaFold-Multimer. bioRxiv, 2021.2010.2004.463034 (2022).
18. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K.

Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T.

Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589 (2021). doi:10.1038/s41586-021-03819-2 Medline
19. M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679-682 (2022). doi:10.1038/s41592-022-01488-1 Medline
20. T. A. Hopf, A. G. Green, B. Schubert, S. Mersmann, C. P. I. Schärfe, J. B. Ingraham, A. Toth-Petroczy, K. Brock, A. J. Riesselman, P. Palmedo, C. Kang, R. Sheridan, E. J. Draizen, C. Dallago, C. Sander, D. S. Marks, The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics 35, 1582-1584 (2019). doi:10.1093/bioinformatics/bty862 Medline
21. Á. Nemecz, M. S. Prevost, A. Menny, P. J. Corringer, Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90, 452-470 (2016). doi:10.1016/j.neuron.2016.03.032 Medline
22. S. Uysal, V. Vásquez, V. Tereshko, K. Esaki, F. A. Fellouse, S. S. Sidhu, S. Koide, E. Perozo, A. Kossiakoff, Crystal structure of full-length KcsA in its closed conformation. Proc. Natl. Acad. Sci. U.S.A. 106, 6644-6649 (2009). doi:10.1073/pnas. 0810663106 Medline
23. N. Unwin, Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967-989 (2005). doi:10.1016/j.jmb.2004.12.031 Medline
24. S. Zhu, C. M. Noviello, J. Teng, R. M. Walsh Jr., J. J. Kim, R. E. Hibbs, Structure of a human synaptic GABAA receptor. Nature 559, 67-72 (2018). doi:10.1038/s41586-018-0255-3 Medline
25. W. Mongkolthanaruk, G. R. Cooper, J. S. Mawer, R. N. Allan, A. Moir, Effect of amino acid substitutions in the GerAA protein on the function of the alanine-responsive germinant receptor of Bacillus subtilis spores. J. Bacteriol. 193, 2268-2275 (2011). doi:10.1128/JB.01398-10 Medline
26. K. K. Griffiths, J. Zhang, A. E. Cowan, J. Yu, P. Setlow, Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol. Microbiol. 81, 1061-1077 (2011). doi:10.1111/j.1365-2958.2011.07753.x Medline
27. P. J. Barlass, C. W. Houston, M. O. Clements, A. Moir, Germination of Bacillus cereus spores in response to L -alanine and to inosine: The roles of gerL and gerQ operons. Microbiology (Reading) 148, 2089-2095 (2002). doi:10.1099/00221287-148-7-2089 Medline
28. J. A. Maurer, D. E. Elmore, H. A. Lester, D. A. Dougherty, Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL). New gain of function mutations in the loop region. J. Biol. Chem. 275, 22238-22244 (2000). doi:10.1074/jbc.M003056200 Medline
29. X. Ou, P. Blount, R. J. Hoffman, C. Kung, One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. U.S.A. 95, 11471-11475 (1998). doi:10.1073/pnas.95.19.11471 Medline
30. J. D. te Winkel, D. A. Gray, K. H. Seistrup, L. W. Hamoen, H. Strahl, Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front. Cell Dev. Biol. 4, 29 (2016). doi:10.3389/fcell.2016.00029 Medline
31. C. R. Woese, H. J. Morowitz, C. A. Hutchison 3rd, Analysis of action of L-alanine analogues in spore germination. J. Bacteriol. 76, 578-588 (1958). doi:10.1128/jb.76.6.578588.1958 Medline
32. T. L. Kirley, Inactivation of (Na+, K+)-ATPase by beta-mercaptoethanol. Differential sensitivity to reduction of the three beta subunit disulfide bonds. J. Biol. Chem. 265, 4227-4232 (1990). doi:10.1016/S0021-9258(19)39551-1 Medline
33. P. D. Thackray, J. Behravan, T. W. Southworth, A. Moir, GerN, an antiporter homologue important in germination of Bacillus cereus endospores. J. Bacteriol. 183, 476-482 (2001). doi:10.1128/JB.183.2.476-482.2001 Medline
34. A. Senior, A. Moir, The Bacillus cereus GerN and GerT protein homologs have distinct roles in spore germination and outgrowth, respectively. J. Bacteriol. 190, 6148-6152 (2008). doi:10.1128/JB.00789-08 Medline
35. K. Kikuchi, L. Galera-Laporta, C. Weatherwax, J. Y. Lam, E. C. Moon, E. A. Theodorakis, J. Garcia-Ojalvo, G. M. Süel, Electrochemical potential enables dormant spores to integrate environmental signals. Science 378, 43-49 (2022). doi:10.1126/science.abl7484 Medline
36. S. Wang, J. R. Faeder, P. Setlow, Y. Q. Li, Memory of germinant stimuli in bacterial spores. mBio 6, e01859-e15 (2015). doi:10.1128/mBio.01859-15 Medline
37. P. Zhang, J. Liang, X. Yi, P. Setlow, Y. Q. Li, Monitoring of commitment, blocking, and continuation of nutrient germination of individual Bacillus subtilis spores. J. Bacteriol. 196, 2443-2454 (2014). doi:10.1128/JB.01687-14 Medline
38. M. J. Wilson, P. E. Carlson, B. K. Janes, P. C. Hanna, Membrane topology of the Bacillus anthracis GerH germinant receptor proteins. J. Bacteriol. 194, 1369-1377 (2012). doi:10.1128/JB.06538-11 Medline
39. D. R. Zeigler, Z. Prágai, S. Rodriguez, B. Chevreux, A. Muffler, T. Albert, R. Bai, M. Wyss, J. B. Perkins, The origins of 168, W23, and other Bacillus subtilis legacy strains. J. Bacteriol. 190, 6983-6995 (2008). doi:10.1128/JB.00722-08 Medline
40. P. Schaeffer, J. Millet, J. P. Aubert, Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. U.S.A. 54, 704-711 (1965). doi:10.1073/pnas.54.3.704 Medline
41. B. M. Koo, G. Kritikos, J. D. Farelli, H. Todor, K. Tong, H. Kimsey, I. Wapinski, M. Galardini, A. Cabal, J. M. Peters, A.-B. Hachmann, D. Z. Rudner, K. N. Allen, A. Typas, C. A. Gross, Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 4, 291-305.e7 (2017). doi:10.1016/j.cels.2016.12.013 Medline
42. A. J. Meeske, L.-T. Sham, H. Kimsey, B.-M. Koo, C. A. Gross, T. G. Bernhardt, D. Z. Rudner, MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 112, 6437-6442 (2015). doi:10.1073/pnas. 1504967112 Medline
43. L. Pravda, D. Sehnal, D. Toušek, V. Navrátilová, V. Bazgier, K. Berka, R. Svobodová Vareková, J. Koča, M. Otyepka, MOLEonline: A web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res. 46 (W1), W368-W373 (2018). doi:10.1093/nar/gky309 Medline
44. T. A. Hopf, L. J. Colwell, R. Sheridan, B. Rost, C. Sander, D. S. Marks, Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621 (2012). doi:10.1016/j.cell.2012.04.012 Medline
45. D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pagnani, R. Zecchina, C. Sander, Protein 3D structure computed from evolutionary sequence variation. PLOS ONE 6, e28766 (2011). doi:10.1371/journal.pone. 0028766 Medline
46. L. S. Johnson, S. R. Eddy, E. Portugaly, Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010). doi:10.1186/1471-2105-11-431 Medline
47. A. Ducret, E. M. Quardokus, Y. V. Brun, MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis. Nat. Microbiol. 1, 16077 (2016). doi:10.1038/nmicrobiol.2016.77 Medline
48. A. Ramirez-Peralta, P. Zhang, Y. Q. Li, P. Setlow, Effects of sporulation conditions on the germination and germination protein levels of Bacillus subtilis spores. Appl. Environ. Microbiol. 78, 2689-2697 (2012). doi:10.1128/AEM.07908-11 Medline
49. K. A. Stewart, X. Yi, S. Ghosh, P. Setlow, Germination protein levels and rates of germination of spores of Bacillus subtilis with overexpressed or deleted genes encoding germination proteins. J. Bacteriol. 194, 3156-3164 (2012). doi:10.1128/JB.00405-12 Medline
50. V. R. Vepachedu, P. Setlow, Localization of SpoVAD to the inner membrane of spores of Bacillus subtilis. J. Bacteriol. 187, 5677-5682 (2005). doi:10.1128/JB.187.16.56775682.2005 Medline
51. D. Z. Rudner, R. Losick, A sporulation membrane protein tethers the pro-sigmaK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev. 16, 10071018 (2002). doi:10.1101/gad. 977702 Medline
52. M. Fujita, Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis. Genes Cells 5, 79-88 (2000). doi:10.1046/j.1365-2443.2000.00307.x Medline
53. X. Wang, O. W. Tang, E. P. Riley, D. Z. Rudner, The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 24, 287-292 (2014). doi:10.1016/j.cub.2013.11.050 Medline
54. H. Szurmant, T. Fukushima, J. A. Hoch, The essential YycFG two-component system of Bacillus subtilis. Methods Enzymol. 422, 396-417 (2007). doi:10.1016/S0076-6879(06)22020-2 Medline
55. C. B. Bernhards, D. L. Popham, Role of YpeB in cortex hydrolysis during germination of Bacillus anthracis spores. J. Bacteriol. 196, 3399-3409 (2014). doi:10.1128/JB.01899-14 Medline
56. P. A. Levin, I. G. Kurtser, A. D. Grossman, Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 96, 9642-9647 (1999). doi:10.1073/pnas.96.17.9642 Medline
57. S. Ghosh, B. Setlow, P. G. Wahome, A. E. Cowan, M. Plomp, A. J. Malkin, P. Setlow, Characterization of spores of Bacillus subtilis that lack most coat layers. J. Bacteriol. 190, 6741-6748 (2008). doi:10.1128/JB.00896-08 Medline
58. F. H. Ramírez-Guadiana, A. J. Meeske, X. Wang, C. D. A. Rodrigues, D. Z. Rudner, The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol. Microbiol. 105, 689-704 (2017). doi:10.1111/mmi. 13728 Medline
59. Y. Li, P. Catta, K.-A. V. Stewart, M. Dufner, P. Setlow, B. Hao, Structure-based functional studies of the effects of amino acid substitutions in GerBC, the C subunit of the Bacillus subtilis GerB spore germinant receptor. J. Bacteriol. 193, 4143-4152 (2011). doi:10.1128/JB.05247-11 Medline
60. Y. Li, K. Jin, A. Perez-Valdespino, K. Federkiewicz, A. Davis, M. W. Maciejewski, P. Setlow, B. Hao, Structural and functional analyses of the N-terminal domain of the A subunit of a Bacillus megaterium spore germinant receptor. Proc. Natl. Acad. Sci. U.S.A. 116, 11470-11479 (2019). doi:10.1073/pnas. 1903675116 Medline
61. A. Gharpure, J. Teng, Y. Zhuang, C. M. Noviello, R. M. Walsh Jr., R. Cabuco, R. J. Howard, N. T. Zaveri, E. Lindahl, R. E. Hibbs, Agonist selectivity and ion permeation in the $\alpha 3 \beta 4$ ganglionic nicotinic receptor. Neuron 104, 501-511.e6 (2019). doi:10.1016/j.neuron.2019.07.030 Medline
62. P. Nicolas, U. Mäder, E. Dervyn, T. Rochat, A. Leduc, N. Pigeonneau, E. Bidnenko, E. Marchadier, M. Hoebeke, S. Aymerich, D. Becher, P. Bisicchia, E. Botella, O. Delumeau, G. Doherty, E. L. Denham, M. J. Fogg, V. Fromion, A. Goelzer, A. Hansen, E. Härtig, C. R. Harwood, G. Homuth, H. Jarmer, M. Jules, E. Klipp, L. Le Chat, F. Lecointe, P. Lewis, W. Liebermeister, A. March, R. A. T. Mars, P. Nannapaneni, D.

Noone, S. Pohl, B. Rinn, F. Rügheimer, P. K. Sappa, F. Samson, M. Schaffer, B. Schwikowski, L. Steil, J. Stülke, T. Wiegert, K. M. Devine, A. J. Wilkinson, J. M. van Dijl, M. Hecker, U. Völker, P. Bessières, P. Noirot, Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335, 1103-1106 (2012). doi:10.1126/science. 1206848 Medline
63. L. Zheng, W. Abhyankar, N. Ouwerling, H. L. Dekker, H. van Veen, N. N. van der Wel, W. Roseboom, L. J. de Koning, S. Brul, C. G. de Koster, Bacillus subtilis spore inner membrane proteome. J. Proteome Res. 15, 585-594 (2016). doi:10.1021/acs.jproteome.5b00976 Medline

