The WaIR-WalK signaling pathway modulates the activities of both CwIO and LytE through control of the peptidoglycan deacetylase PdaC in Bacillus subtilis

Genevieve S. Dobihal, Josué Flores-Kim, Ian J. Roney, Xindan Wang, David Z. Rudner

Supplemental Figures and Tables

A
P(yoch)-lacZ

B

Figure S1: Transposon-sequencing screen for activators of WaIR-WaIK signaling identifies known regulators. To identify mutants that increase WaIRK signaling, a transposon was used to mutagenize a strain harboring the WaIR activity reporter $\mathrm{P}(\mathrm{yocH})$-lacZ. (A) Transposon insertion profile from three regions of the B. subtilis genome. Each line indicates a transposon insert site, its height represents the number of sequencing reads, and its color (red or blue) indicates its orientation. Insertions in cw/O, ftsEX, walH, and wall that are known to regulate WaIRK signaling are shown. (B) Strains harboring the indicated deletions in the $P(y o c H)$-lacZ background were confirmed to increase WaIRK signaling when strains were spotted on LB agar plates containing $100 \mathrm{mg} / \mathrm{mL}$ X-gal. Images were taken after overnight incubation at $37^{\circ} \mathrm{C}$.
Transposon insertions in walJ were hits in the screen but a deletion mutant did not validate.

Figure S2: Over-expression of pdaC counteracts WalRK inhibition in response to high D,Lendopeptidase activity. (A) Representative fluorescent images of the P (iseA)-venus transcriptional reporter in the indicated strains containing an IPTG-regulated promoter fusion to lytE. Cells were grown to OD600 ~0.15 and images were taken before (0 min) and after (60 min) addition of IPTG ($50 \mu \mathrm{M}$). Over-expression of the catalytic mutant PdaC(D285A) fails to prevent inhibition of WalRK and de-repression of P (iseA)-venus. (B) Representative fluorescent images of the P (iseA)-venus transcriptional reporter in the indicated strains before (0 min) and after (30 min) the addition of $70 \mu \mathrm{~g} / \mathrm{mL}$ (final) recombinant CwIO (rCwIO). rCwIO inhibited WaIRK signaling and de-repressed P (iseA)-venus in wild-type. Over-expression of iseA ($500 \mu \mathrm{MIPTG}$) for 60 min prior to addition of rCwlO did not prevent inhibition of WaIRK.

Figure S3: Impaired growth due to lytE over-expression can be suppressed by over-expression of pdaC but not a catalytic mutant. The indicated strains were grown in LB medium to mid-log, normalized to OD600 $=$ 0.02 in LB, and grown at $37^{\circ} \mathrm{C}$. After 1 hour, IPTG $(50 \mu \mathrm{M})$ was added to the culture, and growth was resumed. OD600 measurements were taken every 6 minutes for 5 hours. Representative growth curves are from one of three biological replicates.

Figure S4: Over-expression of iseA does not protect from exogenouslyadded CwIO . (A) Growth curves of the indicated strains. Wild-type, $\Delta p d a C$, and strains harboring an IPTG-regulated promoter fused to iseA or pdaC were grown for 1 hour in LB medium (with the indicated amount of IPTG) to OD600 of ~ 0.15. Recombinant CwIO was then added ($70 \mu \mathrm{~g} / \mathrm{mL}$ final) and growth at $37^{\circ} \mathrm{C}$ was resumed. OD600 measurements were taken every 6 minutes for 8 hours. (B) Representative phase-contrast images of the indicated strains before (0 min) and after (30 min) addition of rCwlO .

Figure S5: Comparing IPTG-regulated expression of $p d a C$ and induction of native $p d a C$ in response to increased levels of the D,L-endopeptidase LytE. (A) Representative images of $\mathrm{P}($ yoch $)$-venus fluorescence in the indicated strains harboring an IPTG-regulated promoter fusion to pdaC. Increased WalR-dependent expression of $\mathrm{P}(\mathrm{yocH})$-venus can be detected in the presence of $10 \mu \mathrm{M}$ IPTG for wild-type, and $5 \mu \mathrm{M}$ for the strain in which CwIO is the only elongation-specific D,Lendopeptidase present ($\Delta / y t E)$. Strains were grown to OD600 ~ 0.15 in LB medium, induced with IPTG, and imaged 60 min later. (B) Immunoblot analysis of His-tagged PdaC protein levels. Strains contained pdaC-his fused to an IPTG-regulated promoter, or under native control at its native locus with an IPTG-regulated promoter fusion to lytE. Cells were grown to OD600 ~0.15 in LB medium and samples were taken 60 minutes after induction with the indicated concentration of IPTG. The levels of PdaC-His that result from increased levels of LytE are similar to the levels of PdaC-His produced with $10 \mu \mathrm{M}$ IPTG. ScpB was used to control for loading.

Table S1. Primary hits from Tn-seq screen for high WalRK activity

Gene	Hit type	Validation?
$y y c I J$	inactivation	weak
$y d h E$	inactivation	no
yvrGH	inactivation	weak
cwlO	inactivation	yes
ftsEX	inactivation	yes
walHI	inactivation	yes
dacA	inactivation	weak
ponA	inactivation	weak
tagVUEC	over-expression	no
tagFGH	inactivation	no
$g g a A B$	over-expression	yes
$p d a C$	inactivation	intermediate
ltaS	inactivation	no
$p g c A$	inactivation	inactivation

Table S1: Validation of hits from the Tn-seq screen. Genes, or gene clusters, that were enriched for transposon insertions are listed. Hits listed as inactivation contained insertions within the coding region. Over-expression hits contained insertions upstream of the coding region, oriented in a direction that the $P_{\text {pen }}$ promoter was co-directional with gene transcription. Hits were validated by spotting insertion-deletion mutants harboring $\mathrm{P}_{\text {yoch }}-/ a c Z$ on LB agar plates containing $100 \mu \mathrm{~g} / \mathrm{mL}$ X-Gal. Mutants that generated a subtle or modest increase in blue color compared to wild-type after >24 hours of incubation were designated "weak" or "intermediate", respectively. We suspect the impact on WaIRK signaling in these mutants is indirect and/or results from defects in envelope permeability that increases the ability of $\mathrm{X}-\mathrm{Gal}$ to access $ß$-galactosidase in the cell cytoplasm as is likely to be the case for the galE mutant. Importantly, the increase in blue color was substantially stronger for insertions in cwIO, ftsEX, walHI, and when pdaC was overexpressed.

Table S2. Bacillus subtilis strains used in this study

Strain	Genotype	Source	Figure
PY79	wildtype	Youngman et al., 1983 [1]	Source of all strains
bGD729		This study	1, S1
bGD780	$y c g O:: P y o c H-o p t R B S-l a c Z ~(k a n) ~ \Delta p d a C:: e r m ~$	This study	1
bGD819	ycgO::PyocH-optRBS-lacZ (kan) yvbJ::Phyperspank-optRBSpdaC (spec)	This study	1
bGD910	$y c g O:: P y o c H-o p t R B S-l a c Z ~(k a n) ~ \Delta c t a O:: e r m ~$	This study	1
bGD911	ycgO::PyocH-optRBS-lacZ (kan) $\Delta \operatorname{cotT::erm~}$	This study	1
bGD731		This study	S1
bGD902		This study	S1
bGD781	ycgO::PyocH-optRBS-lacZ (kan) Δ walH::erm	This study	S1
bGD895	ycgO::PyocH-optRBS-lacZ (kan) Δ wall::erm	This study	S1
bGD901	$y c g O:: P y o c H-o p t R B S-l a c Z ~(k a n) ~ \Delta w a l J:: e r m ~$	This study	S1
bGD300	amyE::PyocH-optRBS-venus (cat)	Dobihal et al., 2019 [2]	2
bGD818	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank-optRBS-pdaC (spec)	This study	2, S5
bGD709	amyE::PyocH-optRBS-venus (cat) ycgO::Phyperspank-optRBS-iseA (erm)	This study	2
bGD857	yvbJ::Phyperspank-optRBS-pdaC (spec) $\Delta c w I O:: k a n$ amyE::PyocH-optRBS-venus (cat)	This study	2
bGD853	$y c g O:: P h y p e r s p a n k-o p t R B S-i s e A(e r m) \Delta c w I O:: k a n$ amyE::PyocH-optRBS-venus (cat)	This study	2
bGD855	yvbJ::Phyperspank-optRBS-pdaC (spec) $\Delta l y t E:: k a n$ amyE::PyocH-optRBS-venus (cat)	This study	2
bGD851	$y c g O:$:Phyperspank-optRBS-iseA (erm) $\Delta l y t E:$:kan amyE::PyocH-optRBS-venus (cat)	This study	2

bGD170	$\Delta p d a C:: e r m$	This study	2
bGD919	$\Delta p d a C:: e r m$ yhdG::PpdaC-pdaC-6xHis (kan)	This study	2
bGD950	yvbJ::Phyperspank-optRBS-pdaC-6xHis (spec)	This study	2, S5
bGD975	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank-optRBS-pdaC-6xHis (spec)	This study	2
bGD983	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank-optRBS-pdaC(D285A)-6xHis (spec)	This study	2
bGD984	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank-optRBS-pdaC(H427A)-6xHis (spec)	This study	2
bGD110	amyE::PiseA-optRBS-venus (cat)	Dobihal et al. 2019 [2]	3, S2
bGD294	amyE::PiseA-optRBS-venus (cat) yvbJ::Phyperspank-optRBSlytE (spec)	Dobihal et al. 2019 [2]	3, S2
bGD708	amyE::PiseA-optRBS-venus (cat) yvbJ::Phyperspank-optRBSlytE (spec) ycgO::Phyperspank-optRBS-iseA (erm)	This study	3
bGD870	amyE::PiseA-optRBS-venus (cat) yvbJ::Phyperspank-optRBSlytE (spec) ycgO::Phyperspank-optRBS-pdaC (erm)	This study	3, S2
bGD871	amyE::PiseA-optRBS-venus (cat) $\Delta p d a C:: \mathrm{erm}$	This study	3
bGD869	amyE::PiseA-optRBS-venus (cat) ycgO::Phyperspank-optRBS-pdaC (erm)	This study	3
bGD707	amyE::PiseA-optRBS-venus (cat) ycgO::Phyperspank-optRBS-iseA (erm)	This study	S2, S4
bGD1018	yvbJ::Phyperspank-optRBS-lytE (spec) amyE::PiseA-optRBSvenus (cat) ycgO::Phyperspank-optRBS-pdaC(D285A) (erm)	This study	S2, S3
bGD810	yvbJ::Phyperspank-optRBS-pdaC (spec)	This study	4
bGD847	$y v b J:: P h y p e r s p a n k-o p t R B S-p d a C$ (spec) $\Delta l y t E::$ kan	This study	4
bGD848	yvbJ::Phyperspank-optRBS-pdaC (spec) $\Delta c w l O:: k a n$	This study	4
bGD997	amyE::PiseA-optRBS-venus (cat) ytol::Pveg-mTagBFP (kan)	This study	4
bGD998	amyE::PiseA-optRBS-venus (cat) $\Delta p d a C:: e r m$ ytol::PvegmTagBFP (kan)	This study	4
bGD999	amyE::PiseA-optRBS-venus (cat) ycgO::Phyperspank-optRBS-pdaC (erm) ytol::Pveg-mTagBFP (kan)	This study	4

bGD965	pdaC::pdaC-6xHis (kan)	This study	S5
bGD976	$p d a C:: p d a C-6 x H i s ~(k a n) ~ y v b J:: P h y p e r s p a n k-o p t R B S-l y t E ~$ (spec)	This study	S5

Table S3. Plasmids used in this study

Plasmid	Description	Source
pGD179	$y v b J::$ Phyperspank-optRBS-pdaC (spec, amp)	This study
pGD187	$y c g O::$ Phyperspank-optRBS-pdaC (erm, amp)	This study
pGD196	$y c g O::$ Phyperspank-optRBS-pdaC(D285A) (erm, amp)	This study
pGD197	$y c g O::$ Phyperspank-optRBS-pdaC(H427A) (erm, amp)	This study
pGD203	$y v b J::$ Phyperspank-optRBS-pdaC(D285A)-6xHis (spec, amp)	This study
pGD204	$y v b J::$ Phyperspank-optRBS-pdaC(H427A)-6xHis (spec, amp)	This study
pIR242	Himar1C9 IR-spec Ppen-IR terminators (amp, erm)	This study
pJM63	PT7-His $^{\text {-SUMO-cwIOAcc }}$	Dobihal et al., 2019 [2]
pYB190	$y c g O::$ Phyperspank-optRBS-iseA (erm)	Dobihal et al., 2019 [2]
pWX294	empty vector with pACYC origin and MCS (amp)	This study
pWX634	Mmel-TnKRM (spec, amp)	This study
pWX638	pACYC HiMar repG(ts) (amp)	This study
pWX642	pACYC Mmel-TnKRM (spec, erm, amp)	This study

Table S4. Oligonucleotide primers used in this study

Oligonucleotide	Sequence
OJM36	agaagcggccgcttattctg
OJM37	ctgagcgagggagcagaactcactttttatatcctcccttttac
OJM38	gttgaccagtgctccctgtaataaatatgacaagggccttct
OJM39	tcatccgtctgaagcacac
oJM54	tgctatcggagagcattgg
oJM55	ctgagcgagggagcagaaatcatgaaatcacctaatcttttatatc
OJM56	gttgaccagtgctccctgtaaagtgaaaaagccgttccag
oJM57	taatgtctctgcagtgcgag
OJM40	agttgcaatcacaagtgtatg
OJM41	ctgagcgagggagcagaattcatattttcctccccaaatgtt
OJM42	gttgaccagtgctccctgtaatttttagagaaaacccgttcattgg
oJM53	tcacctgtgagcatataatagtag
oJM3	gattaacgaaaggttgagatgttatgGAGGGAGGAAAGGCAGGA
oJM4	caatggatgatgagtttgtttgtgtCGCCGTATCTGTGCTCTC
OJM28	TTCTGCTCCCTCGCTCAG
oJM29	CAGGGAGCACTGGTCAAC
oGD509	GTGAGCGGATAACAATTAAGCTTacaTAAGGAGGaactactttgTTGGCAAAAAGAATCAAATGGTTTCA
oGD510	GCTAGCatCTGCAGttACTAGTttaTTTCGCTTCTCTTTGTTTTTTTAACCTC
oGD517	CGTTGACCAAGAGCATAC
oGD521	gaggcggcctgtatggccGAATTCTTTTATGATGAAATTCCTTAAAAAGGATTGAC
oGD525	gaagAATTgGATCCatGCTAGCatCTCGAGTttaGTGATGATGATGATGATGTTTCGCTTCTCTTTGTTTTT
oGD540	GCTTACTTTCGCCGACGGCCCGAATC
oGD541	GATTCGGGCCGTCGGCGAAAGTAAGC
oGD542	CCATTTTGATTGCCGATATTTACCG
oGD543	CGGTAAATATCGGCAATCAAAATGG
oGD486	cctcaaatggttcgctgGgatccttattttgacaccagaccaactggtaatggtagcg
oGD487	gtcacaagcagctgggaagGAATTCGAAATCCTTCATGTAAAGGAAC

oGD565	GCTAGCatCTGCAGttACTAGTttaGTGATGATGATGATGATGTTTCGCTTCTCTTTGTTTTTTAACCTCTT
oGD571	ccttttgataaagagagcgtcGAc
oGD572	CgacgctctctttatcaaaaggATTAGAAAAGGCTGTCCGTACG
oGD573	GCAAGTCTTCATGATCAAAACG
oIR541	gccactagttCGAAAAAACGG
oIR542	cggCTGCAgCAACGTTCTTG
oML78	CCATTAGAACATAGGGAGAG
oWX1154	GGCCGGTCGACCAGACCGGGGACTTATCATCCAACCTGTTAGCGGCCGCA
oWX1155	AGCTTGCGGCCGCTAACAGGTTGGATGATAAGTCCCCGGTCTGGTCGACC
oWX1156	TAGTCCACTCTCAACTCCTGATCC
oWX1157	GTCGACCTGCAGGCATGCAAGCTTGAGGGAAACCGTTGTGGTCTCCC
oWX1158	AATAACTAGCATAACCCCTTGGGG
oWX1159	GAGGCCCCAAGGGGTTATGCTAGTTATTGAATTCGTCCAGAAGGTCGATAG
oWX1160	GTTTCCCTCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGG

Supplemental References:

1. Youngman, P.J., J.B. Perkins, and R. Losick, Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci U S A, 1983. 80(8): p. 2305-9.
2. Dobihal, G.S., et al., Homeostatic control of cell wall hydrolysis by the WalRK twocomponent signaling pathway in Bacillus subtilis. Elife, 2019. 8.
