The WalR-WalK signaling pathway modulates the activities of both CwIO and LytE through control of the peptidoglycan deacetylase PdaC in *Bacillus subtilis*

Genevieve S. Dobihal, Josué Flores-Kim, Ian J. Roney, Xindan Wang, David Z. Rudner

Supplemental Figures and Tables

Figure S1: Transposon-sequencing screen for activators of WalR-WalK

signaling identifies known regulators. To identify mutants that increase WalRK signaling, a transposon was used to mutagenize a strain harboring the WalR activity reporter P(yocH)-lacZ. (A) Transposon insertion profile from three regions of the *B. subtilis* genome. Each line indicates a transposon insert site, its height represents the number of sequencing reads, and its color (red or blue) indicates its orientation. Insertions in *cwlO, ftsEX, walH*, and *wall* that are known to regulate WalRK signaling are shown. (B) Strains harboring the indicated deletions in the P(yocH)-lacZ background were confirmed to increase WalRK signaling when strains were spotted on LB agar plates containing 100mg/mL X-gal. Images were taken after overnight incubation at 37°C. Transposon insertions in walJ were hits in the screen but a deletion mutant did not validate.

Dobihal et al. Figure S2

P(iseA)-venus

Figure S2: Over-expression of *pdaC* **counteracts WalRK inhibition in response to high D,L-endopeptidase activity. (A)** Representative fluorescent images of the P(iseA)-venus transcriptional reporter in the indicated strains containing an IPTG-regulated promoter fusion to *lytE*. Cells were grown to OD600 ~0.15 and images were taken before (0 min) and after (60 min) addition of IPTG (50 µM). Over-expression of the catalytic mutant PdaC(D285A) fails to prevent inhibition of WalRK and de-repression of P(iseA)-venus. **(B)** Representative fluorescent images of the P(iseA)-venus transcriptional reporter in the indicated strains before (0 min) and after (30 min) the addition of 70 µg/mL (final) recombinant CwIO (rCwIO). rCwIO inhibited WalRK signaling and de-repressed P(iseA)-venus in wild-type. Over-expression of *iseA* (500 µM IPTG) for 60 min prior to addition of rCwIO did not prevent inhibition of WalRK.

Figure S5: Comparing IPTG-regulated expression of *pdaC* and induction of native *pdaC* in response to increased levels of the D,L-endopeptidase LytE. (A) Representative images of P(yocH)-venus fluorescence in the indicated strains harboring an IPTG-regulated promoter fusion to *pdaC*. Increased WaIR-dependent expression of P(yocH)-venus can be detected in the presence of 10 μ M IPTG for wild-type, and 5 μ M for the strain in which CwIO is the only elongation-specific D,L-endopeptidase present (Δ /*ytE*). Strains were grown to OD600 ~0.15 in LB medium, induced with IPTG, and imaged 60 min later. (B) Immunoblot analysis of His-tagged PdaC protein levels. Strains contained *pdaC-his* fused to an IPTG-regulated promoter, or under native control at its native locus with an IPTG-regulated promoter fusion to *lytE*. Cells were grown to OD600 ~0.15 in LB medium and samples were taken 60 minutes after induction with the indicated concentration of IPTG. The levels of PdaC-His that result from increased levels of LytE are similar to the levels of PdaC-His produced with 10 μ M IPTG. ScpB was used to control for loading.

Gene	Hit type	Validation?
yycIJ	inactivation	weak
ydhE	inactivation	no
yvrGH	inactivation	weak
cwl0	inactivation	yes
ftsEX	inactivation	yes
walHI	inactivation	yes
dacA	inactivation	weak
ponA	inactivation	weak
tagVUEC	inactivation	no
tagFGH	over-expression	intermediate
ggaAB	inactivation	no
pdaC	over-expression	yes
ltaS	inactivation	intermediate
pgcA	inactivation	no
gtaB	inactivation	weak
manA	inactivation	no
galE	inactivation	yes
fliDST	inactivation	weak
degSU	inactivation	no
lytA	inactivation	no
ybfF	inactivation	no

Table S1. Primary hits from Tn-seq screen for high WalRK activity

Table S1: Validation of hits from the Tn-seq screen. Genes, or gene clusters, that were enriched for transposon insertions are listed. Hits listed as inactivation contained insertions within the coding region. Over-expression hits contained insertions upstream of the coding region, oriented in a direction that the Ppen promoter was co-directional with gene transcription. Hits were validated by spotting insertion-deletion mutants harboring PyocH-lacZ on LB agar plates containing 100 µg/mL X-Gal. Mutants that generated a subtle or modest increase in blue color compared to wild-type after >24 hours of incubation were designated "weak" or "intermediate", respectively. We suspect the impact on WalRK signaling in these mutants is indirect and/or results from defects in envelope permeability that increases the ability of X-Gal to access ß-galactosidase in the cell cytoplasm as is likely to be the case for the galE mutant. Importantly, the increase in blue color was substantially stronger for insertions in cw/O, ftsEX, walHI, and when pdaC was overexpressed.

Strain	Genotype	Source	Figure
PY79	wildtype	Youngman et al., 1983 [1]	Source of all strains
bGD729	<i>ycgO</i> ::РуосН- <i>optRBS-lacZ</i> (kan)	This study	1, S1
bGD780	ycgO::PyocH-optRBS-lacZ (kan) ∆pdaC::erm	This study	1
bGD819	ycgO::PyocH-optRBS-lacZ (kan) yvbJ::Phyperspank-optRBS- pdaC (spec)	This study	1
bGD910	ycgO::PyocH-optRBS-lacZ (kan) ∆ctaO::erm	This study	1
bGD911	ycgO::PyocH-optRBS-lacZ (kan) ∆cotT::erm	This study	1
bGD731	ycgO::PyocH-optRBS-lacZ (kan) ∆cwlO::cat	This study	S1
bGD902	ycgO::PyocH-optRBS-lacZ (kan) ∆ftsEX::cat	This study	S1
bGD781	ycgO::PyocH-optRBS-lacZ (kan) ∆walH::erm	This study	S1
bGD895	ycgO::PyocH-optRBS-lacZ (kan) ∆walI::erm	This study	S1
bGD901	ycgO::PyocH-optRBS-lacZ (kan) ∆walJ::erm	This study	S1
bGD300	amyE::PyocH-optRBS-venus (cat)	Dobihal et al., 2019 [2]	2
bGD818	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank- optRBS-pdaC (spec)	This study	2, S5
bGD709	amyE::PyocH-optRBS-venus (cat) ycgO::Phyperspank- optRBS-iseA (erm)	This study	2
bGD857	yvbJ::Phyperspank-optRBS-pdaC (spec) ∆cwlO::kan amyE::PyocH-optRBS-venus (cat)	This study	2
bGD853	<i>ycgO</i> ::Phyperspank- <i>optRBS-iseA</i> (erm) <i>∆cwlO</i> :: <i>kan</i> <i>amyE</i> ::PyocH- <i>optRBS-venus</i> (cat)	This study	2
bGD855	yvbJ::Phyperspank-optRBS-pdaC (spec) △lytE::kan amyE::PyocH-optRBS-venus (cat)	This study	2
bGD851	ycgO::Phyperspank-optRBS-iseA (erm) ∆lytE::kan amyE::PyocH-optRBS-venus (cat)	This study	2

Table S2. Bacillus subtilis strains used in this study

bGD170	ΔpdaC::erm	This study	2
bGD919	<i>∆pdaC::erm yhdG:</i> :PpdaC- <i>pdaC-6xHis</i> (kan)	This study	2
bGD950	yvbJ::Phyperspank-optRBS-pdaC-6xHis (spec)	This study	2, S5
bGD975	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank- optRBS-pdaC-6xHis (spec)	This study	2
bGD983	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank- optRBS-pdaC(D285A)-6xHis (spec)	This study	2
bGD984	amyE::PyocH-optRBS-venus (cat) yvbJ::Phyperspank- optRBS-pdaC(H427A)-6xHis (spec)	This study	2
bGD110	amyE::PiseA-optRBS-venus (cat)	Dobihal et al. 2019 [2]	3, S2
bGD294	amyE::PiseA-optRBS-venus (cat) yvbJ::Phyperspank-optRBS- lytE (spec)	Dobihal et al. 2019 [2]	3, S2
bGD708	amyE::PiseA-optRBS-venus (cat) yvbJ::Phyperspank-optRBS- lytE (spec) ycgO::Phyperspank-optRBS-iseA (erm)	This study	3
bGD870	amyE::PiseA-optRBS-venus (cat) yvbJ::Phyperspank-optRBS- lytE (spec) ycgO::Phyperspank-optRBS-pdaC (erm)	This study	3, S2
bGD871	amyE::PiseA-optRBS-venus (cat) <i>\DpdaC</i> ::erm	This study	3
bGD869	amyE::PiseA-optRBS-venus (cat) ycgO::Phyperspank- optRBS-pdaC (erm)	This study	3
bGD707	amyE::PiseA-optRBS-venus (cat) ycgO::Phyperspank- optRBS-iseA (erm)	This study	S2, S4
bGD1018	<pre>yvbJ::Phyperspank-optRBS-lytE (spec) amyE::PiseA-optRBS- venus (cat) ycgO::Phyperspank-optRBS-pdaC(D285A) (erm)</pre>	This study	S2, S3
bGD810	yvbJ::Phyperspank-optRBS-pdaC (spec)	This study	4
bGD847	yvbJ::Phyperspank-optRBS-pdaC (spec) △lytE::kan	This study	4
bGD848	yvbJ::Phyperspank-optRBS-pdaC (spec) ∆cwlO::kan	This study	4
bGD997	amyE::PiseA-optRBS-venus (cat) ytoI::Pveg-mTagBFP (kan)	This study	4
bGD998	amyE::PiseA-optRBS-venus (cat) ∆pdaC::erm ytol::Pveg- mTagBFP (kan)	This study	4
bGD999	amyE::PiseA-optRBS-venus (cat) ycgO::Phyperspank- optRBS-pdaC (erm) ytol::Pveg-mTagBFP (kan)	This study	4

bGD96	5 pdaC::pdaC-6xHis (kan)	This study	S5
bGD97	6 pdaC::pdaC-6xHis (kan) yvbJ::Phyperspank-optRBS-lytE (spec)	This study	S5

Plasmid	Description	Source
pGD179	<pre>yvbJ::Phyperspank-optRBS-pdaC (spec, amp)</pre>	This study
pGD187	<pre>ycgO::Phyperspank-optRBS-pdaC (erm, amp)</pre>	This study
pGD196	<pre>ycgO::Phyperspank-optRBS-pdaC(D285A) (erm, amp)</pre>	This study
pGD197	<pre>ycgO::Phyperspank-optRBS-pdaC(H427A) (erm, amp)</pre>	This study
pGD203	<pre>yvbJ::Phyperspank-optRBS-pdaC(D285A)-6xHis (spec, amp)</pre>	This study
pGD204	<pre>yvbJ::Phyperspank-optRBS-pdaC(H427A)-6xHis (spec, amp)</pre>	This study
pIR242	Himar1C9 IR-spec Ppen-IR terminators (amp, erm)	This study
pJM63	P _{T7} -His ₆ -SUMO-cwlO∆cc	Dobihal et al., 2019 [2]
pYB190	ycgO::Phyperspank-optRBS-iseA (erm)	Dobihal et al., 2019 [2]
pWX294	empty vector with pACYC origin and MCS (amp)	This study
pWX634	Mmel-TnKRM (spec, amp)	This study
pWX638	pACYC HiMar repG(ts) (amp)	This study
pWX642	pACYC MmeI-TnKRM (spec, erm, amp)	This study

Table S3. Plasmids used in this study

Oligonucleotide	Sequence
oJM36	agaagcggccgcttattctg
oJM37	ctgagcgaggagcagaactcactttttatatcctcccttttac
oJM38	gttgaccagtgctccctgtaataaatatgacaagggccttct
oJM39	tcatccgtctgaagcacac
oJM54	tgctatcggagagcattgg
oJM55	ctgagcgaggagcagaaatcatgaaatcacctaatcttttatatc
oJM56	gttgaccagtgctccctgtaaagtgaaaaagccgttccag
oJM57	taatgtctctgcagtgcgag
oJM40	agttgcaatcacaagtgtatg
oJM41	ctgagcgaggagcagaattcatattttcctccccaaatgtt
oJM42	gttgaccagtgctccctgtaatttttagagaaaacccgttcattgg
oJM53	tcacctgtgagcatataatagtag
oJM3	gattaacgaaaggttgagatgttatgGAGGGAGGAAAGGCAGGA
oJM4	caatggatgatgagtttgtttgtgtCGCCGTATCTGTGCTCTC
oJM28	TTCTGCTCCCTCGCTCAG
oJM29	CAGGGAGCACTGGTCAAC
oGD509	GTGAGCGGATAACAATTAAGCTTacaTAAGGAGGaactactttgTTGGCAAAAAGAATCAAATGGTTTCA
oGD510	GCTAGCatCTGCAGttACTAGTttaTTTCGCTTCTCTTTGTTTTTTAACCTC
oGD517	CGTTGACCAAGAGCATAC
oGD521	gaggcggcctgtatggccGAATTCTTTTATGATGAAATTCCTTAAAAAGGATTGAC
oGD525	gaagAATTgGATCCatGCTAGCatCTCGAGTttaGTGATGATGATGATGATGTTTCGCTTCTCTTTGTTTTT
oGD540	GCTTACTTTCGCCGACGGCCCGAATC
oGD541	GATTCGGGCCGTCGGCGAAAGTAAGC
oGD542	CCATTTTGATTGCCGATATTTACCG
oGD543	CGGTAAATATCGGCAATCAAAATGG
oGD486	cctcaaatggttcgctgGgatccttatttttgacaccagaccaactggtaatggtagcg
oGD487	gtcacaagcagctgggaagGAATTCGAAATCCTTCATGTAAAGGAAC

Table S4. Oligonucleotide primers used in this study

oGD565	GCTAGCatCTGCAGttACTAGTttaGTGATGATGATGATGATGTTTCGCTTCTCTTTGTTTTTAACCTCTT
oGD571	ccttttgataaagagagcgtcGAc
oGD572	CgacgctctctttatcaaaaggATTAGAAAAGGCTGTCCGTACG
oGD573	GCAAGTCTTCATGATCAAAACG
oIR541	gccactagttCGAAAAAACGG
oIR542	cggCTGCAgCAACGTTCTTG
oML78	CCATTAGAACATAGGGAGAG
oWX1154	GGCCGGTCGACCAGACCGGGGGACTTATCATCCAACCTGTTAGCGGCCGCA
oWX1155	AGCTTGCGGCCGCTAACAGGTTGGATGATAAGTCCCCGGTCTGGTCGACC
oWX1156	TAGTCCACTCTCAACTCCTGATCC
oWX1157	GTCGACCTGCAGGCATGCAAGCTTGAGGGAAACCGTTGTGGTCTCCC
oWX1158	AATAACTAGCATAACCCCTTGGGG
oWX1159	GAGGCCCCAAGGGGTTATGCTAGTTATTGAATTCGTCCAGAAGGTCGATAG
oWX1160	GTTTCCCTCAAGCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGG

Supplemental References:

- 1. Youngman, P.J., J.B. Perkins, and R. Losick, *Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917*. Proc Natl Acad Sci U S A, 1983. **80**(8): p. 2305-9.
- 2. Dobihal, G.S., et al., *Homeostatic control of cell wall hydrolysis by the WalRK two-component signaling pathway in Bacillus subtilis.* Elife, 2019. **8**.