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Regulation of peptidoglycan hydrolases: localization, 
abundance, and activity
Anna P Brogan and David Z Rudner

Most bacteria are surrounded by a cell wall composed of 
peptidoglycan (PG) that specifies shape and protects the cell 
from osmotic rupture. Growth, division, and morphogenesis are 
intimately linked to the synthesis of this exoskeleton but also its 
hydrolysis. The enzymes that cleave the PG meshwork require 
careful control to prevent aberrant hydrolysis and loss of 
envelope integrity. Bacteria employ diverse mechanisms to 
control the activity, localization, and abundance of these 
potentially autolytic enzymes. Here, we discuss four examples 
of how cells integrate these control mechanisms to finely tune 
cell wall hydrolysis. We highlight recent advances and exciting 
avenues for future investigation.
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Introduction
Most bacteria are encased within a peptidoglycan (PG) 
exoskeleton composed of glycan strands with the re
peating disaccharide units N-acetylglucosamine and N- 
acetylmuramic acid that are cross-linked together by 
attached peptides. This three-dimensional meshwork 
encapsulates the cytoplasmic membrane, specifies cell 
shape, and protects the cell from osmotic lysis [1]. Bac
terial growth, division, and morphogenesis are intimately 
linked to the synthesis and hydrolysis of this covalently 
closed macromolecule. To enlarge the PG meshwork 
during growth, bonds connecting the glycan strands 
must be broken to allow its expansion and/or to in
corporate new strands between the existing ones. Simi
larly, during cell division, bonds must be cleaved in the 
nascent septal PG to allow outer membrane constriction 

in Gram-negative bacteria and to promote cell separation 
in Gram-positives. Finally, during bacterial differentia
tion, PG synthesis and hydrolysis remodel the meshwork 
to generate new morphologies or to shed existing pro
tective layers. Cell wall hydrolases are central to these 
processes, but their activities must be carefully regulated 
to prevent excessive or inappropriate cleavage and the 
generation of lethal breaches in this protective layer. 
The mechanisms by which these autolytic enzymes are 
regulated are only beginning to be elucidated and are 
the subject of this minireview.

Most bacteria contain dozens of distinct cell wall hy
drolases that are capable of cleaving virtually all the 
bonds that hold the PG meshwork together [2]. Several 
target the glycosidic linkages in the polymeric glycan 
strands, while others cleave distinct bonds in the peptide 
cross-links. Owing to a high degree of functional re
dundancy, in many cases, PG hydrolase mutants have 
modest or lack discernible phenotypes. Further com
plicating their characterization, specific hydrolases and 
their biological roles are often not conserved among 
bacteria. Despite these challenges, in a growing number 
of bacteria, sets of autolytic enzymes that participate in 
growth, division, or morphogenesis have been identified. 
Understanding the mechanisms by which these hydro
lases are regulated and coordinated with PG synthesis is 
a major focus in the field.

The control of PG hydrolases can be subdivided into 
three broad categories: (1) direct activation or inhibition 
by regulatory proteins or small molecules, (2) spatial 
regulation by proteins or surface polymers or through 
modification of the PG substrate, and (3) control of PG 
hydrolase abundance at the transcriptional or post- 
transcriptional level. In virtually all cases, the regula
tion of these autolytic enzymes incorporates more than 
one of these control mechanisms to finely tune activity 
and to provide spatial and temporal control. Here, we 
devote our attention to four well-characterized ex
amples that feature distinct combinations of control. 
We suggest that each provides principles that will in
form how virtually all PG hydrolases are regulated. We 
point the reader to several excellent reviews for a more 
general discussion of cell wall biogenesis [1,3], the 
different types and activities of PG hydrolases [2,4], 
and the many cellular processes in which PG hydrolases 
have been implicated [5].
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FtsEX: a broadly conserved regulatory module 
of diverse peptidoglycan hydrolases 
The enzymes that synthesize the cell wall and many of 
the proteins that regulate them are broadly conserved 
among bacteria. By contrast, PG hydrolases are sig
nificantly more diverse, as are their regulators. The 
standout exception is the regulatory complex composed 
of FtsE and FtsX (FtsEX). This substrate-less ABC 
transporter has been found to regulate distinct PG hy
drolases in diverse bacterial species, including Escherichia 
coli [6], Streptococcus pneumoniae [7], Bacillus subtilis [8,9], 
Mycobacterium tuberculosis [10], Corynebacterium gluta
micum [11], Caulobacter crescentus [12], and Vibrio cholerae  
[13]. The FtsEX membrane complex provides one of 
the best examples of direct control of PG hydrolase ac
tivity combined with localization to a distinct sub
cellular site. 

FtsEX is a member of the type-VII ABC transporter 
superfamily, members of which function in mechan
otransmission rather than transport [14]. FtsE is the 
ATPase and FtsX is the transmembrane domain sub
unit of the complex [15]. The extracytoplasmic loops of 
FtsX interact with species-specific PG hydrolases [7] or 
regulators of PG hydrolases [6]. In both cases, the 
protein that directly contacts FtsX contains a regulatory 
coiled-coil domain that is the target of mechan
otransmission. 

The most well-studied example of this complex comes 
from E. coli, where FtsEX functions during cytokinesis 
to promote cleavage of the newly synthesized septal PG 
and thus enables outer membrane constriction [16] 
(Figure 1). The ABC transporter complex functions to 
localize and control the activity of two functionally re
dundant amidases, AmiA and AmiB [6]. A regulatory 
protein with a coiled-coil domain called EnvC links 
FtsEX to these enzymes [17,18]. Structural studies of 
EnvC indicate that its coiled-coils resemble molecular 
tweezers that hold its amidase-activating domain in an 
‘off’ state. Recent structural work of the FtsEX•EnvC 
complex [19] and previous studies on AmiA and AmiB  
[20] provide a working model for how amidase activation 
is controlled by cycles of ATP hydrolysis (Figure 1). 
AmiA and AmiB contain autoinhibitory helices that bind 
to their active site clefts, rendering these enzymes in
active in the periplasm [20]. Relief of inhibition is trig
gered by EnvC binding, which must first escape from 
the clutches of its own coiled-coils. In its basal state, 
FtsEX maintains EnvC in its autoinhibited state. ATP 
hydrolysis by FtsE results in a conformational change in 
FtsX that is transmitted to EnvC's coiled-coils, resulting 
in release of its amidase-binding domain [19]. Interac
tion with the autoinhibitory helices of AmiA and AmiB 
transiently activates these enzymes [21], presumably 
until EnvC's amidase-activating domain is rebound by 
its coiled-coils. 

The FtsEX complex not only regulates AmiA and AmiB, 
it also spatially controls their activity. Studies in E. coli 
indicate that FtsEX is initially recruited to the cytoki
netic ring by the tubulin-like protein FtsZ [22] but then 
interacts with the actin-like protein FtsA [23] (Figure 1). 
The signal(s) that stimulate cycles of ATP hydrolysis are 
currently unknown but are thought to be linked to the 
onset of PG synthesis during cytokinesis and could be 
triggered by FtsA. Furthermore, since septal PG synth
esis is thought to stimulate PG hydrolysis [24], FtsEX 
serves to intimately coordinate these opposing processes 
during division. 

Other Gram-negative bacteria have been found to en
code one or more homologs of AmiA and AmiB and 
EnvC-like proteins [12,13,25,26]. Recent work on a few 

Figure 1  
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FtsEX controls amidase localization and activity during cytokinesis in E. 
coli. Schematic model of FtsEX regulation of amidases required for cell 
division in E. coli. The periplasmic amidases AmiA and AmiB are 
autoinhibited by helices (circles) that occlude their active sites. 
Extracytoplasmic loops of FtsX dimers interact with EnvC, maintaining 
the autoinhibition of its amidase-activating domain. The FtsEX complex 
is recruited to the divisome by FtsZ and then interacts with FtsA. The 
onset of septal PG synthesis during cytokinesis is hypothesized to be 
the signal that stimulates FtsE ATPase activity. ATP hydrolysis is 
thought to catalyze a conformational change in FtsX that is transmitted 
to EnvC, triggering relief of inhibition. EnvC, in turn, activates AmiA and 
AmiB by binding to their autoinhibitory helices. Thus, autoinhibition and 
relief of inhibition by FtsEX–EnvC restrict amidase activity to the septum 
during division.   
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of these factors highlights both similarities and differ
ences in the regulatory control mechanism established in 
E. coli. In several Gram-positive bacteria, FtsEX com
plexes have been found to directly control cell wall hy
drolases that contain regulatory coiled-coil domains  
[8,9,27]. In these cases, the coiled-coil tweezers hold the 
catalytic domain inactive and mechanotransmission is 
thought to transiently relieve this inhibition in a manner 
analogous to the control of EnvC [27]. Although most 
characterized FtsEX homologs function in cell division, 
in B. subtilis, FtsEX controls a hydrolase required for cell 
wall elongation [8,9]. The current thinking is that B. 
subtilis FtsEX coordinates PG hydrolysis with PG 
synthesis carried out by the cell wall elongation complex  
[8,9], perhaps using actin-like MreB proteins to stimu
late FtsE's ATPase activity [9,28]. This interesting 
model requires further exploration but suggests that the 
broad conservation of the FtsEX regulatory module re
lates to its intimate association with conserved PG 
synthesis machineries. Future work will address the 
breadth of ways this complex functions to activate cell 
wall hydrolysis and will focus on the signals that sti
mulate FtsE's ATPase activity and the mechanisms by 
which FtsEX coordinates PG synthesis and hydrolysis. 

The regulation of autolytic enzymes during 
spore germination 
Exit from dormancy requires the degradation of the 
specialized cell wall that encases and protects the spore. 
The enzymes that cleave this PG layer are regulated by 
small-molecule activation, relief of inhibition, and sub
strate modification. 

In response to starvation, bacteria in the orders Bacillales 
and Clostridiales differentiate into metabolically inactive 
spores that are resistant to a myriad of environmental 
insults, including heat, desiccation, radiation, and toxic 
chemicals [29]. Spores can remain dormant for decades 
yet rapidly resume growth in response to nutrients  
[30,31]. A key step in the exit from dormancy is the 
degradation of the spore-specific PG called the cortex 
that encases the dormant spore (Figure 2). This en
velope layer maintains the spore core in a highly desic
cated state by physically restricting its expansion and 
thereby preventing hydration [32]. In Bacillus species, 
two functionally redundant lytic transglycosylases (CwlJ 
and SleB) that can degrade the cortex are deposited in 
the spore's envelope layers during spore formation [33]. 
These enzymes remain inactive for decades yet rapidly 
activate during germination [30]. 

The regulation of CwlJ and SleB is incompletely un
derstood but involves two distinct mechanisms of con
trol. CwlJ is activated by a small molecule called 
dipicolinic acid (DPA) [34]. The mother cell that nur
tures the developing spore synthesizes and transports 

large quantities of this molecule into the spore cyto
plasm during sporulation. The accumulation of DPA 
displaces water, contributing to core dehydration [35]. 
One of the earliest events in germination is the expul
sion of DPA from the core and genetic evidence suggests 
that CwlJ requires DPA as a cofactor for PG hydrolase 
activity [34]. Thus, this enzyme, which resides in the 
envelope layers, is inactive during dormancy but can be 
rapidly activated when DPA is expelled during germi
nation (Figure 2). This simple on–off switch for PG 
cleavage activity awaits biochemical confirmation. Un
like CwlJ, SleB does not require DPA for its activity. 
Instead, this enzyme is encoded in an operon with a 
membrane protein (YpeB) that is thought to hold SleB 
inactive [36] (Figure 2). The mechanism by which SleB 
escapes inhibition during germination is currently un
known but is certain to be distinct from the relief of 
inhibition described above for the FtsEX module. 

Figure 2  
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Regulation of autolytic enzymes during spore germination. Schematic 
models of dormant and germinating spores, highlighting the regulation 
of the cortex-degrading enzymes CwlJ and SleB. Both proteins are 
deposited in the developing spore before dormancy and remain inactive 
until germination. SleB is hypothesized to be held inactive by YpeB at 
the spore's IM. CwlJ localizes in the spore coat adjacent to the cortex 
PG. Evidence suggests that CwlJ activity requires DPA as a cofactor 
and is therefore inactive until the large stores of DPA (pink circles) are 
released from the spore core. In response to nutrients (not shown), DPA 
is expelled from the core and activates CwlJ, while SleB is activated by 
an unknown mechanism. These two enzymes rapidly degrade the cortex 
working from opposite faces of this envelope layer. CwlJ and SleB 
specifically recognize the muramic-δ-lactam sugars (purple and gray 
hexagons) in the cortex, ensuring its degradation while sparing the germ 
cell wall that serves as the foundational PG layer of the outgrowing 
vegetative cell.   
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In addition to control of enzymatic activity, CwlJ and 
SleB are subject to spatial control at the levels of sub
cellular localization and substrate modification. CwlJ 
localizes adjacent to the distal edge of the cortex [37], 
while YpeB and likely SleB are located adjacent to the 
spore inner membrane (IM) [38]. Thus, upon activation, 
these enzymes act on opposing faces of the cortex 
(Figure 2). Importantly, both lytic transglycosylases 
specifically cleave the glycan strands of the cortex PG 
that are synthesized during sporulation but must avoid a 
thinner layer of cell wall that lies adjacent to the spore 
membrane. This layer, called the germ cell wall, is si
milar in structure to vegetative PG and functions as the 
foundational layer of PG during spore outgrowth. The 
cortex PG differs from the germ cell wall and vegetative 
PG through a cyclic modification on the MurNAc sugar 
that converts it to muramic-δ-lactam [32] (Figure 2). 
CwlJ and SleB specifically recognize glycan strands with 
these modified sugars and are incapable of cleaving the 
germ cell wall that lacks them [39]. Thus, spore germi
nation features direct regulatory control of the cortex 
lytic enzymes combined with subcellular localization 
and substrate modification to ensure efficient degrada
tion of the spore's protective PG layer while sparing the 
cell wall template required for outgrowth. 

Regulation of cell wall cleavage by surface 
polymers 
A terrific example of spatial control of autolytic enzymes 
by surface polymers comes from recent work on the Gram- 
positive pathogen S. pneumoniae (Sp). Like most 
Firmicutes, Sp's envelope is studded with anionic poly
mers called teichoic acids [40]. These polymers are both 
lipid-linked (lipoteichoic acids (LTAs)) and attached to 
the PG (wall teichoic acids (WTAs)). However, unlike 
most Firmicutes, in Sp, these polymers are assembled 
from the same precursor and are decorated with phos
phocholine moieties [41]. Also distinct from other bacteria, 
several PG hydrolases in Sp are fused to choline-binding 
domains (CBDs) that target these factors to the LTAs 
proximal to the membrane or to the WTAs within the PG  
[42]. Sp uses the phosphocholine moieties in two ways to 
spatially regulate its autolysins (Figure 3). In the first, it 
controls the levels of LTAs throughout growth by reg
ulating the abundance of the LTA synthase, TacL [43]. 
By controlling the levels of TacL, the cell can modulate 
flux into LTA or WTA synthesis since they use a common 
precursor. Increasing the levels of LTAs during ex
ponential growth sequesters the CBD-containing PG hy
drolases, LytA, LytB, and LytC, away from the wall and 
thus reduces overall hydrolytic activity during growth. 
However, in stationary phase or in response to cell wall- 
targeting antibiotics, TacL levels drop, causing a reduction 
in LTAs and an increase in WTAs. This switch in surface 
polymer synthesis relocates PG hydrolases to the cell wall 
where LytA triggers autolysis [43] (Figure 3). 

The second mechanism of spatial control of PG cleavage 
involves a WTA hydrolase called WhyD. Recent work 
indicates that during exponential growth, WhyD actively 
removes most of the WTA from the PG, helping to 
prevent autolysis [44,45]. However, WhyD also func
tions to regulate the spatial localization of the CBD- 
containing hydrolases by sparing some of the WTAs 
from removal. During growth, WTAs are enriched in 
regions adjacent to the divisome where the majority of 
cell elongation occurs (Figure 3). Directing the CBD- 
containing PG hydrolases to this region is thought to 
promote expansion of the meshwork at these sites [44]. 
Thus, Sp controls PG hydrolase activity by sequestering 
these enzymes away from the wall and by tailoring the 
WTAs in the PG meshwork to spatially control what 
regions of the wall get cleaved. How TacL abundance is 
regulated and the mechanism by which WhyD avoids 
specific WTAs are outstanding questions for future in
vestigation. 

In a variation on this theme, several Gram-positive 
bacteria spatially regulate PG hydrolases by controlling 
the localization of WTAs or LTAs on their surface. The 
presence or absence of these polymers have been found 
to recruit or exclude specific hydrolases [46–48]. The 
molecular bases for this spatial control remain to be 
discovered. The regulation of PG hydrolases by teichoic 
acids naturally raises the question whether modifications 
of these polymers could provide an additional layer of 
control [49]. WTAs and LTAs are modified by D-ala
nylation and glycosylation and the enzymes responsible 
for these decorations are often induced during envelope 
stress [50]. Whether and how these modifications affect 
hydrolase control is an exciting question for the future. 

Transcriptional control of peptidoglycan 
hydrolases and their regulators 
Transcriptional control of PG hydrolases is among the 
most common strategies to regulate enzyme abundance. 
Given the need to rapidly adjust hydrolase activity 
throughout the cell cycle, this mechanism of control is 
often combined with additional layers of regulation, in
cluding direct inhibition, substrate modification, and 
intrinsic instability. Bacteria employ sensory proteins, 
usually two-component signaling systems (TCSS) or 
sigma/anti-sigma modules, that determine when to ad
just cell wall cleavage activity. In most cases, the signals 
that these sensory proteins monitor are unknown. The 
WalK–WalR TCSS from B. subtilis provides a useful 
example as it is well studied and encompasses multiple 
modes of regulation (Figure 4). The WalR response 
regulator is a transcriptional activator of two cell wall 
hydrolases (LytE and CwlO) required for cell growth  
[51]. Both enzymes are D,L-endopeptidases that cleave 
peptide cross-bridges enabling expansion of the PG 
meshwork [52]. Recent studies indicate that when the 
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levels of these enzymes are low, WalR activity increases, 
presumably as a consequence of phosphorylation by 
WalK, and the levels of the PG hydrolases rise [53]. 
Reciprocally, when D,L-endopeptidase activity is too 
high, WalR activity decreases reducing expression of 
these enzymes. Interestingly, the signal that modulates 
changes in WalRK signaling is directly linked to the 
activity of the enzymes. Evidence suggests that the 
sensor kinase WalK senses a cleavage product generated 
by D,L-endopeptidases and in turn modulates the 
phosphorylation status of WalR [53]. Thus, this TCSS 
functions to maintain a goldilocks level of these autolytic 
enzymes (Figure 4). 

Transcriptional regulation alone would not be sufficient 
to alter PG hydrolase activity on the timeframe of a cell 
cycle. Accordingly, other regulatory mechanisms are 
built into this circuit. CwlO has a half-life of less than 
5 min [53] and its transcript is highly unstable [54]. 
Thus, changes in transcription quickly translate into 
changes in protein abundance. Similarly, WalR is not 

only a transcriptional activator of cwlO and lytE, it is also 
a repressor of iseA, a secreted inhibitor of LytE [51,55]. 
IseA was given its name (inhibitor of cell separation A) 
because of its ability to inhibit D,L-endopeptidases re
quired for cell separation when overexpressed on a 
multicopy plasmid [56]. However, recent work suggests 
its primary target may be LytE in its role in cell elon
gation [53,57]. IseA's solution structure resembles a 
hacksaw, the ‘blade’ of which (a flexible loop) has been 
modeled in the active site of D,L-endopeptidase family 
members [58]. This model has led to the proposal that 
IseA sterically blocks these PG hydrolases by substrate 
mimicry. The reciprocal transcriptional regulation of 
hydrolase and inhibitor provides an efficient mechanism 
to rapidly control D,L-endopeptidase activity (Figure 4). 

As an additional measure of control, when D,L-en
dopeptidase cleavage is high, WalR also derepresses 
pdaC encoding a PG deacetylase [59]. PdaC is a mem
brane-anchored polysaccharide deacetylase that acts on 
the MurNAc sugars [60] such that LytE, CwlO, and 

Figure 3  
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Regulation of cell wall cleavage by surface polymers in S. pneumoniae. Schematic models of Sp during growth and stationary phase, highlighting the 
regulation of cell wall hydrolases by LTAs and WTAs. During exponential growth, both LTAs and WTAs are produced but a WTA hydrolase WhyD (not 
shown) removes most WTAs from the cell wall. Only WTAs adjacent to the septum are spared. The PG hydrolases LytA, LytB, and LytC (yellow) 
contain phosphocholine-binding domains that bind these moieties on teichoic acids (pink circles). During growth, these enzymes are largely 
sequestered away from the cell wall by the LTAs. However, some of these PG hydrolases are recruited to the WTAs adjacent to the septum to promote 
cell wall elongation during zonal PG synthesis. The enzymes that synthesize the PG are shown schematically as gray ovals. During stationary phase or 
in response to cell wall-targeting antibiotics, the LTA synthase TacL is degraded (not shown), leading to a dramatic reduction in LTAs. The TA 
precursors are instead attached to the cell wall increasing WTA levels. It is unknown whether WhyD activity is also reduced under these conditions. In 
response to this switch in surface polymer localization, the PG hydrolases relocate to the wall and cause autolysis. LytA is the primary autolysin under 
these conditions.   
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likely other autolytic enzymes cannot bind and/or cleave 
the nascent deacylated PG [57] (Figure 4). This provides 
a mechanism to rapidly reduce cell wall cleavage during 
growth. Taken together, substrate modification, direct 
inhibition, and intrinsic instability of hydrolases coupled 
with transcriptional regulation of hydrolases and their 
regulators allows B. subtilis to tightly control the autolytic 
activity required for growth. 

The WalRK system is broadly conserved throughout 
Firmicutes, and in all known cases, the WalR regulon 
contains PG hydrolase genes [51,61–63]. However, it is 
not yet known if the regulatory circuit described here is 
conserved among these organisms. In fact, recent studies 
suggest that WalRK signaling in Clostridioides difficile is 
not linked to the PG hydrolases under WalR control, 
arguing that distinct signals modulate WalK activity [62]. 
Nevertheless, the modes of regulation exhibited by 
components of the B. subtilis WalRK circuit are present 
throughout bacteria. Regulation of PG hydrolase abun
dance by sigma/anti-sigma systems [64], TCSS [65], and 
other transcription factors [66] is very common and 
regulation by PG hydrolase instability has been 

suggested for endopeptidases in both E. coli [67] and 
Pseudomonas aeruginosa [68]. 

Outlook 
Bacteria employ a variety of mechanisms to control the 
levels, activity, and localization of their PG hydrolases. 
Here, we have described a few of the most highly con
served and well-characterized examples of how cells 
integrate these control mechanisms to finely tune cell 
wall cleavage. Owing to space constraints, several 
emerging examples [69–73] were not discussed. Al
though work in recent years has provided a framework 
for hydrolase control, future studies in this area will be 
required to provide mechanistic understanding and to 
elucidate the extent to which cells combine control 
mechanisms to more precisely regulate cell wall cleavage 
during growth, division, and morphogenesis. 
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Figure 4  

Current Opinion in Microbiology

Transcriptional control of PG hydrolases and their regulators. The TCSS WalK–WalR homeostatically controls the levels and activities of CwlO and 
LytE during growth. The WalK sensor kinase is thought to monitor the D,L-endopeptidase activity of CwlO and LytE by sensing cleavage products 
generated by these enzymes. When D,L-endopeptidase activity gets too high (left panel), WalK responds by reducing phosphorylation of WalR (right 
panel), resulting in decreased transcription of cwlO and lytE and derepression of iseA and pdaC. CwlO has a very short half-life and therefore its levels 
are rapidly reduced when transcription decreases. IseA is a secreted inhibitor of LytE. Finally, PdaC deacetylates the muramic acids (small pink circles) 
in the PG reducing cleavage by both CwlO and LytE. As D,L-endopeptidase activity decreases, WalK-dependent phosphorylation of WalR rises (left 
panel), leading to increase expression of cwlO and lytE and repression of iseA and pdaC.   
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