

Supplemental Figure 1: Transposon insertion profiles of germinated and outgrown mutant spores. Transposon libraries generated in strains of the indicated genotype were sporulated by nutrient exhaustion for 30 hours. Cultures were heat treated and then plated on LB agar. Colonies from germinated and outgrown spores from each library were separately pooled and transposon junctions were deep sequenced and mapped to a reference genome. At the onset of starvation, a sample of wild-type (WT) cells was collected ("vegetative") and transposon insertions mapped. Shown are regions containing the ypeB, sleB, cotE, and ger Q genes. The height of each vertical line corresponds to the number of transposon junctions mapped to that locus, with the height of each box set to 250 reads.

A
Scer_Cda1
Bsub_SwsB
Spne_PgdA
BCer_BC1960
Rmel_NodB

Scer_Cdal Bsub_SwsB Spne_PgdA BCer_BC1960 Rmel_NodB
Scer_Cdal
Bsub_SwsB
Spne_PgdA
BCer_BC1960
Rmel_NodB

Scer_Cdal
Bsub_SwsB
Spne_PgdA
Bcer_BC1960
Rmel_NodB

B

Supplemental Figure 2: Multiple protein alignment of selected CE4 family enzymes. Protein sequences in the CE4 family were obtained from the Carbohydrate Active Enzymes (CAZy) database (http://www.cazy.org) and subjected to multiple sequence alignment (36). Blue boxes highlight residues that act as or position the catalytic base in polysaccharide deacetylases from other species (41, 42). Green box indicates zinc-binding domain. Red boxes indicate residues that act as or position the catalytic acid. (A) Multiple protein alignment of broadly conserved polysaccharide deacetylases. Labels indicate species followed by gene name, with the species listed as follows: Scer - Saccharomyces cerevisiae; Bsub - Bacillus subtilis; Spne - Streptococcus pneumoniae; Bcer Bacillus cereus; Rmel - Rhizobium meliloti. (B) Multiple protein alignment of more-narrowly conserved SwsB-like proteins. Colored boxes are in the same positions as in (A). Labels indicate species, listed as follows: Bsub Bacillus subtilis (SwsB); Pthe - Parageobacillus thermoglucosidasius (WP_06550991.1); Tvul - Thermoactinomyces vulgaris (WP_037996499); Cace - Clostridium aceticum (WP_044825898.1); Cdif - Clostridioides difficile (WP_003438319.1); Hhal - Halobacteroides halobius (WP_015326413).

Supplemental Figure 3: SwsB is required for Ca^{2+}-DPA-mediated spore germination. Representative phase-contrast micrographs of spores germinating in Ca^{2+}-DPA. Spores of the indicated genotype were purified by density gradient centrifugation and then resuspended in freshly prepared $60 \mathrm{mM} \mathrm{Ca}^{2+}$-DPA followed by incubation at $22^{\circ} \mathrm{C}$ with agitation. Aliquots were removed every 30 minutes for imaging. Experiments were performed in biological triplicate, with representative images shown. For each sample, >1000 spores were scored at the 120-minute timepoint.

Supplemental Figure 4: Complementation of $\Delta s w s B \Delta s l e B$ with sws B alleles containing strong foresporeand mother-cell-specific promoters. The $\Delta s w s B \Delta s l e B$ double mutant was transformed at an ectopic locus ($y c g O$) with swsB under control of the strong mother cell promoter PspollD (M-swsB) or the strong forespore promoter PsspB (F-swsB). Cells were then sporulated by nutrient exhaustion, heat-treated, and plated on LB agar to assess heat-resistant colony forming units. Wild-type spore viability ($\sim 3.8 \times 108$ CFU/ml) was set to 100%. Error bars indicate standard deviation, $n=3$.

Supplemental Figure 5: Major muropeptide species from spore peptidoglycan identified by UPLC-QTOF analysis. (A) Figure 6 enlarged to show numbered peaks with identified masses. (B) Total ion chromatogram of the wild-type sample. Numbers correspond to the same peaks in (A). All experiments were performed in triplicate, with representative chromatograms shown.

Supplemental Figure 6 (following page): Proposed structures of identified muropeptides. Hypothetical chemical structures were drawn based on the digestion pattern of mutanolysin and the molecular weights of the major species found in Supplemental Table 1. LD (3-3) and DD (4-3) peptide crosslinks are ambiguous and could be interchanged. Site of deacetylation on muropeptide 5 was determined by MS-MS fragmentation analysis (see Supplemental Figure 7). Site of deacetylation on muropeptide 16 was assumed at the same location.

Supplemental Figure 7: Mass fragmentation pattern of deacetylated monomer. Muropeptide 5 was subjected to MS-MS analysis to determine location of deacetylation. Mass spectrum after fragmentation is shown. m.u. mass units.

Supplemental Figure 8: Complementation of $\Delta s l e B \Delta c w / J$ with ectopically expressed cwlJ alleles. The $\Delta s l e B \Delta c w / J$ double mutant was transformed at an ectopic locus (amyE) with either cwlJ or a tagged version of CwlJ containing a C-terminal hexahistidine tag (cwlJ-His). Cells of the indicated genotype were sporulated by nutrient exhaustion, heat-treated, and plated on LB agar to assess heat-resistant colony forming units. The data are presented with a logarithmic y-axis for clarity, with wild-type spore viability ($\sim 3.8 \times 108 \mathrm{CFU} / \mathrm{ml}$) set to 1 . Error bars indicate standard deviation, $\mathrm{n}=3$.

Supplemental Figure 9: Phylogenetic tree of SwsB- CwlJ- and SpollE orthoglogs. Protein sequences of CwIJ, SwsB, and SpollE (to serve as a marker for spore-forming organisms) were subjected to homology searches using BLAST against the NCBI Reference Sequence protein database. E-value cutoff for all proteins was $1 \times 10-8$. CwlJ hits were further selected to be at least 35% identical to B. subtilis CwIJ so as to differentiate them from SleB, which shares some homology with CwIJ. SwsB hits were also subjected to subsequent filtering to differentiate from multiple other CE4 family deacetylases with high homology. SwsB homologs were defined as BLAST hits that retained zinc-binding (H192 and H188 in B. subtilis) and catalytic-acid residues (D256 and H282 in B. subtilis) but lacked catalytic-base residues (N137 and A226 in B. subtilis SwsB; D and R, respectively, in non-SwsB deacetylases). These regions were defined by performing multiple alignments of protein sequences in the CE4 family from the CAZy database (see Supplemental Figure 2). Hits were then plotted on a Newick tree built from the Reference Prokaryotic Representative Genomes library available at NCBI and visualized using iTOL $(64,65)$. Full interactive tree is available at http://itol.embl.de/shared/jamon. Note that not all organisms with hits are represented on this tree. A complete list of hits for CwIJ and SwsB is available in Dataset S1.

Table S1: List of muropeptides identified by UPLC-QTOF analysis

Peak	$[\mathrm{M}+\mathrm{H}]^{+}$	Proposed muropeptide composition								
		NAG	NAM	NAM(-Ac)	δ-NAM	δ-NAM (Reduced)	δ-NAM (acetal)	Ala	Glu	Dap
1	871.3797	1	1	0	0	0	0	1	1	1
2	668.2983	0	1	0	0	0	0	1	1	1
3	871.3798	1	1	0	0	0	0	1	1	1
4	1143.5076	1	1	0	0	1	0	2	1	1
5	900.4025	1	0	1	0	0	0	2	1	1
5a	570.2516	1	1	0	0	0	0	1	0	0
6	942.4146	1	1	0	0	0	0	2	1	1
7	1243.5612	1	1	0	0	0	0	2	2	2
8	974.4388	2	1	0	0	1	0	1	0	0
9	1346.5937	2	1	0	0	1	0	2	1	1
10	942.4142	1	1	0	0	0	0	2	1	1
11	699.2949	1	1	0	0	0	0	1	1	0
12	1385.6221	1	1	0	0	0	0	4	2	2
13	1385.6377	1	1	0	0	0	0	4	2	2
14	1801.6968	-	-	-	-	-	-	-	-	-
15	1420.5998	2	2	0	0	0	0	2	1	1
16	1752.7580	2	1	1*	0	0	0	3	2	2
17	1591.6933	1	2	0	0	0	0	3	2	2
17a	1874.7662	-	-	-	-	-	-	-	-	-
18	1794.7730	2	2	0	0	0	0	3	2	2
18a	1386.5952	-	-	-	-	-	-	-	-	-
19	1360.5706	2	1	0	1	0	0	2	1	1
20	2301.9964	3	2	0	0	0	1	4	2	2
21	1662.7328	1	2	0	0	0	0	4	2	2
22	1865.8013	2	2	0	0	0	0	4	2	2
23	988.4106	2	1	0	1	0	0	1	0	0
24	2720.1401	4	2	0	1	0	1	4	2	2
25	2283.9676	3	2	0	1	0	0	4	2	2

* site of deacetylation was assumed at NAM as per NAM deacetylation in muropeptide 5 .

TABLE S2: Bacillus subtilis strains used in this study

Strain	Genotype	Source	Figure
168	$t r p C 2$	Zeigler et al., 2008 (54)	1-4, 6, 7, S1, S3, S5, S8
BAM476	$\Delta s l e B: /: 10 x 72$	This study	1, S1
BAM478	sypeB::Iox72	This study	1, S1
BAM477	-cwlJ::Iox72	This study	1, S1
BAM837	$\Delta \mathrm{gerQ}$::Iox72	This study	1, S1
BDR3488	$\Delta s w s B$:.lox72	This study	2-7, S3, S4, S5
BDR3486	-cwlJ::Iox72	This study	2, 3, 4, 7, S3
BDR3487	$\Delta s l e B: / 10 x 72$	This study	2-5, 7, S1, S3, S4
BDR3196	$\Delta s l e B:: / 0 x 72 \Delta c w / J$::Iox72	This study	2, 3, 4, 7, S3, S8
BDR3497	$\Delta s w s B$::Iox $72 \Delta c w / J:: 10 x 72$	This study	2, 3, 4, 7, S3
BDR3498	$\Delta s w s B: / 10 x 72$ ssleB::/ox72	This study	2-5, 7, S3
BJA018a	$\Delta \operatorname{cotE}$::cat	This study	2
BJA023a	$\Delta c o t E:: c a t s c w l J$::erm	This study	2
BJA024a	$\Delta c o t E::$ cat Δ sleB::erm	This study	2
BJA020a	$\Delta s a f A:$:tet	This study	2
BJA027a	Δ safA: $\mathrm{tet} \Delta$ cwlJ::erm	This study	2
BJA028a	Δ safA::tet Δ sleB::erm	This study	2
BJA019a	$\Delta g e r Q:$:tet	This study	2
BJA025a	$\Delta g e r Q:$:tet $\Delta c w l J::$ erm	This study	2
BJA026a	$\Delta g e r Q:$:tet $\Delta s l e B::$ erm	This study	2
BDR3513	$\Delta s w s B: / 10 x 72$ ssleB::Iox72 amyE::swsB-His	This study	5
BJA047a	$\Delta s w s B: / / 0 x 72$ asleB::Iox72 amyE::swsB (H282A)-His (spec)	This study	5
BJA048a	$\Delta s w s B: / / 0 x 72$ asleB::Iox72 amyE::swsB (D256A)-His (spec)	This study	5
BJA049a	$\Delta s w s B: / / 0 x 72$ asleB::Iox72 amyE::swsB (D256N)-His (spec)	This study	5
BJA073a	$\Delta s w s B: / \mathrm{lox} 72$ dsleB::/lox72 amyE::Pspolld-swsB (spec)	This study	S4
BJA075a	$\Delta s w s B: / \mathrm{lox} 72 \Delta s l e B:: / 0 x 72$ amyE::PsspB-swsB (spec)	This study	S4
BJA093a	amyE::Pspolld-swsB (spec) ycgO::PsspB-swsB (erm)	This study	6, S5
BJA087a	amyE::cwlJ-His (spec)	This study	7
BJA088a	$\Delta s w s B: / \mathrm{lox} 72$ amy:::cwlJ-His (spec)	This study	7
BJA083a		This study	S8
BJA102a	$\Delta s l e B:: 10 x 72$ scwlJ : $/ 10 x 72$ amyE::cwlJ (spec)	This study	S8
BJA094a	Δ cotE::cat amyE::cwlJ-His (spec)	This study	7
BJA095a	$\Delta g e r Q:$:tet amyE::cwlJ-His (spec)	This study	7
BJA096a	$\Delta s a f A:$:tet amyE::cwlJ-His (spec)	This study	7
BJA105a	$\Delta s w s B$::Iox72 amyE::swsB (spec) ycgO:: $/$ cwlJ-His (cat)	This study	7
BJA106a	$\Delta s w s B$ amyE::swsB-His (spec) ycgO::cwlJ-His (cat)	This study	7
BDR3178	$\Delta g e r A B:$:Iox 72 aspoVFA.:erm	Ramirez-Guadiana et al., 2017 (66)	7
BDR3970	ssleB::/lox72 4 spoVA: tet	Ramirez-Guadiana et al., 2017 (66)	7

TABLE S3: Plasmids used in this study

Plasmid	Description	Source
pFR12	amyE::swsB (spec)	This study
pFR13	amyE::swsB-GSG-His6 (spec)	This study
pJA003	amyE::swsBH282A)-GSG-His6 (spec)	This study
pJA004	amyE::swsB(D256A)-GSG-His6 (spec)	This study
pJA005	amyE::swsB(D256N)-GSG-His6 (spec)	This study
pJA016	amyE::Pspolld-swsB (spec)	This study
pJA018	amyE::PsspB-swsB (spec)	This study
pJA022	amyE::cwIJ-GSG-His6 (spec)	This study
pJA030	ycgO::PsspB-swsB (erm)	This study
pJA035	amyE::cwlJ (spec)	This study
pJA038	ycgO::cwIJ-GSG-His (cat)	This study

TABLE S4 Oligonucleotides used in this study

Oligonucleotide	Sequence
oFR25	gccGGATCCGGTGCACATTTCAGAGCTTGC
oFR26	gccGAATTCATCGCAACAGAACGGACTGTC
oFR28	gccGAATTCTTAGTGATGGTGATGGTGATGTCCTGAGCCCTTCAATAGTCTTGTTTCATC
OJA020	ACATAATGGTGCCATGATTTTAATGGCTCCGACTGACCCTACGGCGGAAAGTC
oJA042	GACTTTCCGCCGTAGGGTCAGTCGGAGCCATTAAAATCATGGCACCATTATGT
oJA021	AGTCATGTGGACAGTTGATACAATCGCTTGGCAAAAGCCGGCTCCGTCTGTAC
oJA043	GTACAGACGGAGCCGGCTTTTGCCAAGCGATTGTATCAACTGTCCACATGACT
OJA022	AGTCATGTGGACAGTTGATACAATCAATTGGCAAAAGCCGGCTCCGTCTGTAC
oJA044	GTACAGACGGAGCCGGCTTTTGCCAATTGATTGTATCAACTGTCCACATGACT
oJA058	ctagagtcgaatcccgAAGCTTACATAAGGAGGAACTACTATGTACAAAAAATTTGTACC
oJA059	TGGTAGCGACCGGCGCTCAGGATCCTTACTTCAATAGTCTTGTTTCATCC
oJA062	aaaaggagatttacacaagctTacataaggaggaactactATGTACAAAAAATTTGTAC
oJA063	aaaaggagatttacacaagctTacataaggaggaactactATGAATCACTTCTATGTGT
oJA068	AGCGACCGGCGCTCAGGATCCTGTGAATCCAGGAATTGAGG
oJA069	CGCCAGGGCTGCAGGAATTCTTAGTGATGGTGATGGTGATGTCCTGAGCCAAATGTGTTATATACATTTTC
OJA093	CGCCATTCGCCAGGGCTGCAGGAATTCTGTGAATCCAGGAATTGAGG
oJA094	AGCGACCGGCGCTCAGGATCCCTAAAATGTGTTATATACATTTTC

Supplemental Methods

Plasmid construction

pFR12 [amyE:: $P_{\text {sws } B-S W S B ~(s p e c)] ~ w a s ~ g e n e r a t e d ~ i n ~ a ~ t w o-w a y ~ l i g a t i o n ~ w i t h ~ a ~ B a m H I-E c o R I ~ P C R ~ p r o d u c t ~}^{\text {B }}$ containing $P_{\text {sws }}$-Sws B (oligonucleotide primers oFR25 + oFR26 using genomic DNA from B. subtilis 168 as template) and pLD30 cut with BamHI-EcoRI. pLD30 [amyE::spec] is an ectopic integration vector for double crossover integrations at the amyE locus (laboratory stock).
pFR13 [amyE::Pswss-swsB-GSG-His6 (spec)] was generated in a two-way ligation with a BamHIEcoRI PCR product containing PswsB-SwsB-GSG-His6 (oligonucleotide primers oFR25 + oFR28 using genomic DNA from B. subtilis 168 as template) and pLD30 cut with BamHI-EcoRI.
pJA003 [amyE:: $P_{\text {swss-SwsB(H292A)-GSG-His6 (spec)] was generated by site-directed mutagenesis of }}$ pFR13 using oligonucleotide primers oJA020 and oJA042.
pJA004 [amyE:: $P_{\text {swss-SwsB(D256A)-GSG-His6 (spec)] was generated by site-directed mutagenesis of }}$ pFR13 using oligonucleotide primers oJA021 and oJA043.
pJA005 [amyE:: $P_{\text {swss-SwsB(D256N)-GSG-His6 (spec)] was generated by site-directed mutagenesis of }}$ pFR13 using oligonucleotide primers oJA022 and oJA044.
pJA016 [amyE:: $P_{\text {spolid-swsB }}$ (spec)] was generated by isothermal assembly of a PCR product containing swsB (oligonucleotide primers oJA058 + oJA059 using genomic DNA from B. subtilis 168 as template) and pKM012 [amyE-PspolID-yfp (spec)] that had been linearized with HindIII and BamHI followed by gel purification to isolate the backbone from the yfp gene. pKM012 is a modified version of pLD30 with a YFP reporter under control of the SpolID promoter designed for double-crossover integration at the amyE locus.
pJA018 [amyE:: $P_{\text {sspb }}-S w s B$ (spec)] was generated by isothermal assembly of a PCR product containing swsB (oligonucleotide primers oJA062 + oJA063 using genomic DNA from B. subtilis 168 as template) and pNC153 [amyE-PsspB-yfp] that had been linearized with HindIII and BamHI followed by gel purification to isolate the backbone from the yfp gene. pNC153 is a modified version of pLD30 with a YFP reporter under control of the SspB promoter designed for double-crossover integration at the amyE locus
pJA022 [amyE:: $P_{\text {cwIJ-CwIJ-GSG-His6 (spec)] }}$ was generated by isothermal assembly of a PCR product
 subtilis 168 as a template) and pLD030 linearized with BamHI and EcoRI.
pJA030 [ycgO ::PsspB-SwsB (erm)] was created by double ligation of the EcoRI-BamHI fragment ($P_{\text {sspB }}$ swsB) from pJA018 into pER118. pER118 [ycgO::erm] is an ectopic integration vector for double crossover integrations at the ycgO locus (laboratory stock).
pJA035 [amyE:: $P_{\text {cwiJ }}$-cwlJ (spec)] was created by isothermal assembly of a PCR product containing $P_{\text {cwild }}$ cwlJ (oligonucleotide primers oJA093 + oJA094 using genomic DNA from B. subtilis 168 as template) into pLD30 linearized with BamHI and EcoRI.
pJA038 [ycgO::PcwiJ-cwIJ-GSG-His6 (cat)] was created by double ligation of the EcoRI-BamHI fragment ($P_{\text {cwiJ-cwlJ-GSG- His6) from pJA022 into pCB042. pCB042 [ycgO::caf] is an ectopic integration vector for }}$ double crossover integrations at the $y c g O$ locus (laboratory stock).

Supplemental References

36. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490-5.
37. Blair DE, Schüttelkopf AW, MacRae JI, van Aalten DMF. 2005. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc Natl Acad Sci USA 102:15429-15434.
38. Psylinakis E, Boneca IG, Mavromatis K, Deli A, Hayhurst E, Foster SJ, Vårum KM, Bouriotis V. 2005. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis. J Biol Chem 280:30856-30863.
39. Zeigler DR, Prágai Z, Rodriguez S, Chevreux B, Muffler A, Albert T, Bai R, Wyss M, Perkins JB. 2008. The origins of 168, W23, and other Bacillus subtilis legacy strains. J Bacteriol 190:6983-6995.
40. Ciccarelli FD, Doerks T, Mering von C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287.
41. Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256-W259.
42. Ramirez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ. 2017. The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 105:689-704.
